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There is considerable interest in the potential of a group of dietary-derived phytochemicals
known as flavonoids in modulating neuronal function and thereby influencing memory, learn-
ing and cognitive function. The present review begins by detailing the molecular events that
underlie the acquisition and consolidation of new memories in the brain in order to provide a
critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on
memory. Data suggests that despite limited brain bioavailability, dietary supplementation with
flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant rever-
sals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular
studies suggest that the mechanisms underpinning their ability to induce improvements in
memory are linked to the potential of absorbed flavonoids and their metabolites to interact with
and modulate critical signalling pathways, transcription factors and gene and/or protein
expression which control memory and learning processes in the hippocampus; the brain
structure where spatial learning occurs. Overall, current evidence suggests that human trans-
lation of these animal investigations are warranted, as are further studies, to better understand
the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.

Flavonoids: Memory: Learning: Hippocampus

Diet is an important lifestyle factor, which in recent times
has been investigated for its influence on cognitive func-
tion and the incidence and onset of neurodegenerative
disorders(1,2). It has long been known that a diet high in
saturated fats negatively impacts on cognitive processing
and increases the risk of neurological dysfunction in both
animals and human subjects(3,4), while energy restriction
(reduction in approximately 30% energy intake) protects
the brain from injury(5,6). Recently, significant evidence
has emerged to indicate that phytochemical-rich foods,
and in particular those rich in flavonoids, may reverse age-
related deficits in cognitive function in both animals and
human subjects(7–9). For example, the PAQUID pro-
spective study examined cognitive performance in 1640

subjects (aged at least 65 years and cognitively normal
at baseline) on four occasions over a 10-year-period
and found that flavonoid-intake was associated with a
significantly better cognitive performance over time(7)

(P = 0.046). Furthermore, a cross-sectional study examin-
ing the relationship between the intake of three common
flavonoid-containing foods (chocolate, wine and tea) and
cognitive performance in elderly individuals revealed that
there was a dose-dependent, positive relationship between
the intake of these foods and performance on multiple
cognitive outcomes (Kendrick Object Learning Test, Digit
Symbol Test, Block Design, Mini-Mental State Examina-
tion and Controlled Oral Word Association Test)(10). More
recently, the consumption of dietary flavonoids, especially
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flavonols (in twenty-three different developed countries)
has been shown to be associated with lower rates of
dementia(9).

In agreement with this observational data, a large num-
ber of dietary intervention studies in both human subjects
and animals, in particular those using flavonoid-rich foods
or beverages derived from Camellia sinensis (tea)(11–16)

Ginkgo biloba (GB)(17–20), Theobroma cacao (cocoa)(21–23)

and Vaccinium spp. (blueberry)(24–28) have similarly
demonstrated beneficial effects on memory and learning.
Although there is evidence suggesting that these diets are
capable of inducing improvements in cognitive function by
protecting vulnerable neurons, enhancing existing neuronal
function or by stimulating neuronal regeneration(29–32), the
precise mechanisms by which these compounds act in the
brain are not fully established.

In order to effectively investigate the precise mechan-
isms by which flavonoids influence memory, learning
and other cognitive processes, we must first consider how
the memory works, including how such processes are
controlled at the molecular level to facilitate acquisition
and storage of sensory information as short- and long-term
memory. Furthermore, how such information is processed
in the hippocampus during specific cognitive events, such
as the learning of spatial task information, will be illu-
strated. In particular, the roles that specific hippocampal
regions play in the acquisition, consolidation and retrieval
of information will help to elucidate how flavonoids are
capable of exerting their specific cognitive improvements
following supplementation. Lastly, the review will describe
the various datasets from rodent studies that have investi-
gated the impact of chronic supplementation with flavo-
noid-rich foods and/or beverages (green tea, blueberries
and GB) and pure flavonoids on spatial memory and how
that impacts on specific learning-related molecular events
in the brain. Overall, a better understanding of the mol-
ecular basis underpinning the effects of flavonoid-rich
foods on cognition will help us to determine how best to
manipulate diet in order to increase the resistance of neu-
rons to insults and promote mental fitness.

Flavonoids: dietary sources and bioavailability

Flavonoids comprise the most common group of poly-
phenolic compounds in the human diet. Recent data
show that the daily flavonoid intake per-capita is estimated
to be about 182 mg in the UK and 177 mg in Ireland(33). The
major sources of flavonoids include fruits, vegetables, tea,
wine and cocoa(34). They may be divided into different
subclasses according to the degree of oxidation of the
heterocyclic ring, the hydroxylation pattern of the ring struc-
ture and the substitution in the three-position. Accordingly,
the main dietary groups of flavonoids are: (1) anthocyanins
whose main sources include red wine and berry fruits; (2)
flavanols, found in green tea, red wine, cocoa; (3) flavonols
found in onions, leeks and broccoli; (4) flavones which are
abundant in parsley and celery; (5) isoflavones, typically
found in soya and soya products and (6) flavanones which
are mainly found in citrus fruits and tomatoes (Table 1). It
has been reported that anthocyanins and flavanols may

account for approximately 65% of the total consumption
of flavonoids in the UK(33). In general, flavonoids in foods
exist as hydroxylated, methoxylated and/or glycosylated
derivatives (except for catechins)(35,36) and are linked to a
sugar moiety that is often glucose or rhamnose.

Once ingested, flavonoids undergo extensive phase I and
II metabolism in the small and large intestine, in the liver
and in cells, resulting in very different forms in the body
to those found in food itself(37–40). Accordingly, all classes
of flavonoids undergo extensive metabolism in the jejunum
and ileum of the small intestine, with the resulting meta-
bolites entering the portal vein where they will subse-
quently undergo further metabolism in the liver (Fig. 1).
As mentioned, dietary flavonoids are substrates for phase I
(hydrolysing and oxidising) and phase II (conjugating
and detoxifying) enzymes, being de-glucosylated and
metabolised into glucuronides, sulphates and O-methylated
derivatives(36,39,41,42). For instance, green tea catechins
are typically metabolised in the liver to glucuronides, sul-
phates and O-methylated derivatives of these con-
jugates(43–45). On the other hand, anthocyanins, unlike
other flavonoids, do not appear to undergo extensive phase
I and II metabolism of the parent anthocyanidin(46). Rather,
only a relatively small percentage (<2%) of the parent
compounds are detected in the blood or in the urine within
24 h of consumption(47–50), suggesting a poor absorption of
these compounds and/or their decomposition in the neutral
or alkaline conditions of the small intestine(51). However,
experiments in ileostomy patients (lacking a colon) have
suggested that up to 85% of anthocyanins from blueberry
may traverse the small intestine intact, indicating that
under normal physiological conditions a high amount of
anthocyanins may reach the large intestine intact(52).

Although absorption is traditionally associated with the
small intestine, the colon is also capable of absorbing
many micronutrients. This process may involve their initial
chemical or microbial transformation. Flavonoids are
known to undergo extensive metabolism in the colon, in
particular by gut microbiota which induce their breakdown
to phenolic acids(38,53) (Fig. 1). The microbiota catalyse
this breakdown of the flavonoid structure in two steps, first
by removing the conjugated moiety (formed in the small
intestine) and second by cleaving the flavonoid backbone
structure, usually across the A-ring. Many of these cata-
bolites are efficiently absorbed in the colon, appear in the
blood and are ultimately excreted in the urine. For exam-
ple, in vitro studies have indicated that protocatechuic
acid is one of the major bacterial degradation products
of anthocyanins(54) and may be found in rat plasma after
feeding cyanidin-3-O-glucoside(55). In a human interven-
tion study involving orange-juice supplementation, proto-
catechuic acid was also the main product found in the
blood and was estimated to account for up to 70% of total
anthocyanin intake(56). Altogether, there is evidence to
suggest that degradation products, such as protocatechuic
acid, may be present in tissues at higher concentrations
than the parent anthocyanidin. Therefore, it is clear that
both the small intestinal conjugates of flavonoids and the
bacterial-derived products formed in the colon are likely to
contribute, at least in part, to the biological activities
ascribed to anthocyanins and other flavonoids in vivo(57).
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Table 1. Structure of the main flavonoids present in the human diet

Group Functional groups Structural formula Examples Food sources

Anthocyanins R1 = H, OH, OCH3; R2 = H, OH, OCH3 Pelargonidin, cyanidin, delphinidin,

petunidin, malvidin, paeonidin

Red wine, berries

Flavanols R1 = gallate, OH R2 = H; OH Catechin, epicatechin,

epigallocatechin,

epigallocatechin gallate

Green tea, cocoa

Flavonols R1 = OH, R2 = H, OH, OCH3; R3 = H, OH Quercetin, kaempferol, myricetin,

isorhamnetin

Onion, Brocolli

Flavones R1 = H; R2 = H, OH; R3 = H Luteolin, apigenin Parsley, Celery

Isoflavones R1 = OH; R2 = H, OH Genistein, daidzein Soya

Flavanones R1 = H; R2 = H, OCH3; R3 = H, OH Naringenin, hesperetin Citrus fruits, tomatoes
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Bioavailability of flavonoids in the brain

In order for flavonoids to directly influence brain function,
they must cross the blood–brain barrier (58) (Fig. 1). The
extent of their blood–brain barrier penetration has been
shown to be dependent on the lipophilicity of the com-
pound(59). In theory, O-methylated flavonoid metabolites
should be able to access the brain more easily than the
more polar flavonoid glucuronides, although some drug
glucuronides can cross the blood–brain barrier(60) and exert
pharmacological effects(61). The flavanol epigallocatechin
(EGC) gallate, a relatively polar flavanol, has been repor-
ted to enter the brain after the gastric administration
of (3H)-EGC gallate(62). Similarly, the flavanols EGC gal-
late and epicatechin (EC)(62,63), as well as anthocyanins(64)

such as pelargonidin(65), have all been found in the brain
after oral administration. Furthermore, flavanones have
also been found in rodent brain following intravenous
administration(66).

With regard to specific brain localisation, several studies
report anthocyanins in different regions of the brain of
both rodents and pigs after supplementation with blue-
berry(58,67,68) and grape extract(69) and (- )-EC and its
O-methylated derivatives have been shown in the brains
of mice supplemented with the pure compound for 2
weeks(70). Lastly, a 12-week blueberry supplementation
was shown to result in accumulation of anthocyanins and
flavanols in both the hippocampus and cortex(24), with the
total amounts of flavanols (including flavanol metabolites)
being much higher than that of anthocyanins despite

blueberry being higher in the latter. This confirms previous
data suggesting that flavanols are more bioavailable than
anthocyanins after oral administration (reviewed in(45)).

Memory and learning

Spatial memory and its localisation in the brain

Learning and memory are two related processes by which
information about the world (collected through sensory
apparatus) is acquired, stored and later retrieved in the
brain. There are two major types of memory: (1) declara-
tive or explicit memory, which is designed to represent
objects and events in the external world, as well as the
relationships between them and (2) non-declarative or
implicit memory, which is related with perceptual-motor
skills and habits. The main difference between these is
that while the retrieval of declarative memories requires
conscious attention, non-declarative memories can be
retrieved without conscious recollection(71). These two
parallel memory systems are dependent on different brain
structures. Declarative memories are dependent on the
integrity of the hippocampus, while non-declarative or
implicit memories depend upon the integrity of structures
such as amygdala and striatum(71,72). Early discoveries in
amnesic patients, such as the widely known ‘patient HM’,
showed an important role for the hippocampus in the pro-
cess of consolidating labile short-term explicit memories
into a more stable form, the so-called long-term mem-
ory(73). It is also widely accepted that repeated exposure to

Fig. 1. Summary of the formation of metabolites and conjugates of flavonoids in human subjects. All

classes of flavonoids undergo extensive phase II metabolism in the gastrointestinal tract and liver during

which there is significant glucuronidation and sulfation of nearly all flavonoids by the action of uridine

diphosphate-glucuronosyltransferase and sulfotransferase enzymes, respectively. There is also exten-

sive O-methylation catalysed by the action of catechol-O-methyltransferase. Colonic microflora

degrades flavonoids into smaller phenolic acids, such as phenylacetic acid, protocatechuic acid,

phenylpropionic acid and benzoic acid, which may also be absorbed. Some of these metabolites are

excreted through the kidneys. However, somemay enter peripheral cells (e.g endothelial cells) and cross

the blood–brain barrier and enter the brain. Flavonoids may then undergo further intracellular metab-

olism (phase III), usually oxidative metabolism, P450-related metabolism and conjugation with thiols.

Flavonoids and brain function 249
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Fig. 2. (A) Molecular mechanisms underlying synaptic plasticity processes. (i) Activity-dependent

release from presynaptic neurons lead to activation of a-amino-3-hydroxy-5-methyllisoxazole-4-

propionic acid receptors (AMPAR) that causes depolarisation of the postsynaptic neuron, resulting

in activation of N-methyl-D-aspartate receptors (NMDAR) and Ca2 + influx. (ii) Ca influx causes

activation of kinase signalling pathways, which induces activation of transcription factors and indu-

ces gene expression and new protein synthesis. (iii) This leads to stabilisation of synaptic changes

and contributes to morphological changes at the synapse through regulation of the cytoskeleton

which will ultimately impact on learning and retention of memories. (B) Signalling pathways involved

in controlling memory and learning in the hippocampus. Activation of signalling pathways such as

protein kinase A (PKA), protein kinase C (PKC ), protein kinase B (also known as Akt); extracellular-

signal-regulated kinase 1/2 (ERK1/2) and Ca-calmodulin kinase (CamK) converge to activate the

transcription factor cAMP response element-binding protein (CREB) that regulates the transcription

of many genes associated with synapse re-modelling, synaptic plasticity and memory. PSA-NCAM,

polysialylated-neural cell adhesion molecule; TrkB, truncated tyrosin kinase B receptor; BDNF,

brain-derived neurotrophic factor.
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sensory information, i.e. via repetition or training, helps
during the consolidation process of converting short-
term memories into long-term ones(74,75). Since these first
observations, an extensive body of research has shown that
disruption of the hippocampus primarily affects recently
formed memories, but does not impair recollection of
remote memories, believed to be stored in the neocortex.
Thus, there is a general consensus that the hippocampus
plays a time-limited role in learning processes, being par-
ticularly involved in the acquisition and the consolidation
of memories(76–78).

A particular aspect of declarative memory that has
been used to access the effects of flavonoid-rich diets on
behaviour is spatial memory. Spatial memory is well
characterised in both rodents and human subjects and it is
dependent on the hippocampus in both(79–83). Rodents
provide a good model in which to test spatial memory as
they have an impressive ability to orientate themselves
within a novel environment and can remember complex
relationships between visuospatial cues in a way similar to
human subjects(84,85). As such, several maze environments,
most notably the Radial Arm Maze(86) and Morris Water
Maze (MWM)(87) have been developed to assess rodent
spatial memory and learning. There is direct evidence that
such spatial memory tasks are sensitive to hippocampal
injury, suggesting that these are good models in which to
access spatial memory in rodents(88–90). In addition, it
has been comprehensively reported that rats show distinct
age-related deficits in spatial learning tasks, in a manner
similar to those observed for human subjects in equivalent
‘human’ spatial memory tasks(91–95). Thus, spatial memory
constitutes an excellent model in which to evaluate the
potential of flavonoids to reverse age-related cognitive
deficits. To date, the majority of studies investigating the
impact of flavonoid-rich diets on cognition have focused
on spatial memory in either healthy, aged animals or
senescence-accelerated animal models(24,25,27,96).

Molecular basis of memory

It is widely accepted that the process of learning involves
reversible changes in synaptic transmission within hippo-
campal neuronal circuitry which once stabilised, allow
memory to be retained(97). The process by which these
modifications occur is called synaptic plasticity and,
although the mechanisms underlying this process during
learning and memory are not completely understood,
a growing body of research has provided important
clues(98,99). Long-term potentiation (LTP) is a form of
synaptic plasticity widely accepted as the mechanism
by which memories are laid down and subsequently
stored(100,101). LTP refers to a persistent increase in
synaptic strength between neurons that typically occurs
during learning(102). The initiation of LTP occurs when
there is a simultaneous activation of both pre- and post-
synaptic neuronal cells, which creates an associative link
between the neurons involved.

During LTP, a release of glutamate from the presynaptic
neuron leads to the activation of N-methyl-D-aspartate
receptors in the postsynaptic cell, allowing an influx
of Ca2 + (75,103) (Fig. 2(Ai)). When the intracellular levels

of Ca2 + are sufficiently elevated, it triggers the activation
of signalling pathways, such as cAMP-dependent protein
kinase A(104), protein kinase B (also known as Akt)(105,106),
protein kinase C (PKC)(107), Ca-calmodulin kinase(108,109)

and extracellular-signal-regulated kinase (ERK)(110,111)

(Fig. 2(B)). Phosphorylation of these kinases results in
the modulation of synaptic efficacy, which typically
involves activation of a-amino-3-hydroxy-5-methyllisox-
azole-4-propionic acid receptors(112,113) and consequent
modification of the biophysical properties of this recep-
tor(114,115). For example, the activation of ERK1/2 by
phosphorylation results in its translocation to the nucleus
which triggers the novo gene expression and protein
synthesis, a process that is crucial to maintain LTP and
convert short-term memories into a more stable long-term
form(116,117) (Fig. 2(Aii)).

The persistence of memory depends on structural and
morphological changes in neuronal connections, a process
primarily mediated by new protein synthesis (Fig. 2(Aiii)).
In fact, there is extensive evidence from several
different species that long-term memory requires the tran-
scription and translation of new proteins in order to
be retained(118,119). In particular, the mammalian target of
rapamycin, an Akt pathway target, plays a central role in
translational control and has been shown to be critical
for long-lasting plasticity(120–122). Most importantly,
extensive evidence derived from experimental systems
ranging from molluscs to human subjects indicates that
the cAMP response element binding protein (CREB) is a
core component of the molecular switch that converts
short- to long-term memory(123–125). In mammals, CREB
has been shown to regulate the expression of several genes
during learning and memory, particularly gene products
that are needed to stabilise the synaptic changes that are
triggered during learning(117,126,127) (Fig. 2(B)). The cur-
rent list of target genes includes neurotrophins, proteins
that influence cell signalling, cell structure and cell meta-
bolism and other transcription factors, such as c-fos whose
induction may trigger a second wave of changes in gene
expression(128–130) (Fig. 2(B)).

Neurotrophins are critical molecules that support the
development, differentiation, maintenance and plasticity
of brain function(131,132). Among these molecules, brain-
derived neurotrophic factor (BDNF) is involved in translat-
ing neuronal signals into structural changes in the
synapse(133–135). As such BDNF has been shown to be
necessary to induce long-lasting structural changes at den-
dritic spines located at the terminals of excitatory synap-
ses(136,137). There is a considerable body of evidence
suggesting that modulation of spine morphology correlates
with synaptic plasticity and memory formation(136,138).
Specifically, the increase in a-amino-3-hydroxy-5-methyl-
lisoxazole-4-propionic acid receptors density at the synapse
is thought to have a stabilising effect on spine morpho-
logy(139) (Fig. 2(Aiii)). For example, the activity-regulated
cytoskeletal-associated protein (Arc/Arg3.1), whose
expression is known to be dependent on Akt–mammalian
target of rapamycin activation, was found to regulate
a-amino-3-hydroxy-5-methyllisoxazole-4-propionic acid
receptor trafficking(103). In agreement with this, the expres-
sion of Arc/Arg3.1 was shown to facilitate changes in
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synaptic strength and the induction of morphological chan-
ges, such as those dependent on actin-polymerisation(140,141)

(Fig. 2(B)).
In addition to this, cell adhesion molecules have been

shown to play important roles in synaptic plasticity pro-
cesses during memory formation(142). These molecules
mediate the adhesion between cells, facilitating changes
in synaptic connectivity. In particular, the neural cell
adhesion molecule (NCAM) and its polysialated form,
PSA NCAM, have been shown to regulate neurite out-
growth during memory formation, by mediating neuronal
cell adhesion and signal transduction(143–145). Overall, the
stabilisation of connections between neuronal cells seems
to be dependent on glutamate signalling that regulates and
coordinates simultaneously both cytoskeletal and adhesion
remodelling(98) (Fig. 2).

On the whole, the formation of a memory involves
several phases, including acquisition, during which mole-
cular changes are initiated in specific synapses, and con-
solidation, when those cellular modifications become
stabilised allowing the memory to be retained. Typically
the circuits linking dentate gyrus to Cornu Ammonis 3
(CA3) are more involved with the encoding of the spatial
information, while CA3–CA1 are related to consolidation
and recalling of the information. The resulting modified
neuronal circuit underlies the neural representation of
memory in the brain.

The impact of flavonoid-rich foods on memory and
learning

Animal investigations have clearly indicated that flavo-
noid-rich foods such as spinach, strawberry, blueberry,
GB and green tea are beneficial in retarding and/or
counteracting functional age-related cognitive defi-
cits(19,24,25,27,146,147). Historically, these diets were thought
to be protective due to their antioxidant activity(35,148);
however, it has become clear that antioxidant capacity
alone is not responsible for the ability of flavonoids-
rich diets to prevent or reverse age-related neuronal
and cognitive changes(27,30,149). Although the mechanisms
by which flavonoids act in the brain remain a source of
debate, a substantial number of flavonoid supplementation
studies in animal models has provided important clues
to their function. Investigations have pointed to many
potential mechanisms, including the regulation of oxidative
stress signals such as NF-kB(150), enhancement of neuro-
protective stress shock proteins(151) and anti-inflammatory
actions through the regulation of the expression of specific
inflammatory genes (IL-1b, TNFa)(152). In the following
sections, we will focus on the potential of flavonoids
to modulate and influence the molecular architecture
responsible for learning and memory in the brain and how
such activity may underpin behavioural changes induced
by flavonoid-rich diets and pure compounds.

Green tea

There are an extensive number of studies regarding neu-
roprotection induced by green tea flavonoids in cellular
and animal models, suggesting a potential therapeutic use

of these compounds in regenerating injured neuronal
cells(29,153,154). Green tea contains a high amount of flavanols
(also referred to as catechins), which constitute 30–45% of
the solid green tea extract(155,156). The most abundant poly-
phenolic compound is (- )-EGC-3-gallate, followed by (- )
EGC, EC and (- )-EC-3-gallate (Table 1)(157). Human epi-
demiological and animal data suggest that tea may decrease
the incidence of dementia, Alzheimer’s disease (AD) and
Parkinson’s disease(14,158,159). In support of this, recent ani-
mal studies have shown that green tea intake helps to prevent
age-related cognitive deficits (Table 2), particularly after
long-term administration of green tea (approximately 6
months), which was shown to positively influence memory
and learning in both normally aged and senescence-acceler-
ated animals(96,146,160).

Tea flavonoids have been reported to be potent Fe
chelators, radical scavenging agents and to have anti-
inflammatory activities(161–166). In addition to these effects,
recent studies have also indicated that they are capable of
modulating signal transduction pathways and of regulating
gene expression, and that these effects may also contribute
to the neuroprotective effects of these compounds(29,167). For
example, in vitro and in vivo studies suggest an ability of
green tea catechins to regulate apoptotic pathways(168,169)

as well as cell survival-related kinase signalling pathways,
such as mitogen-activated protein kinase(170), PKC(171) and
phosphoinositide 3–kinase–Akt(172). A great deal of research
has been devoted to the ability of green tea catechins, espe-
cially EGC-3-gallate, to activate the PKC path-
way(171,173,174). Notably, a 2-week pretreatment with a green
tea catechin (EGC-3-gallate) was shown to be protective
against Ab-induced neurotoxicity by attenuating the deple-
tion of PKC isoforms in the hippocampus and decreasing
amyloid precursor protein(173). The PKC family has a fun-
damental role in the regulation of cell survival(175,176), LTP
and memory consolidation(177–179).

In agreement with these molecular findings, the long-
term administration of green tea flavanols has been
shown to prevent spatial memory and learning impairments
in a senescence-accelerated mouse model (senescence-
accelerated mouse prone-8), which was paralleled by the
activation of the protein kinase A–CREB pathway(96).
Furthermore, green tea flavanol intake prevented reduc-
tions in the levels of key proteins involved in synaptic
plasticity and structural plasticity, such as BDNF, post-
synaptic density protein-95 and Ca2 + /calmodulin-
dependent protein kinase II(96) (Table 2). In support of this,
another study using healthy, aged animals highlighted
similar beneficial effects of green tea flavanols (6-month
intervention) on spatial memory, along with increased
levels of hippocampal CREB phosphorylation and increased
levels of some of its target genes, such as BDNF and
Bcl-2(146). These studies indicate that green tea flavanols
may prevent memory decline by regulating crucial synaptic-
related proteins in the hippocampus, potentially via the
CREB pathway. The literature regarding the potential ben-
eficial effects of green tea in young healthy subjects is
limited, although there is some evidence of a significant
(P<0.0002) improvement in working and reference mem-
ory of young rats (1-month-old) in Radial Arm Maze fol-
lowing a 6-month oral administration(12) (Table 2).

252 C. Rendeiro et al.
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Table 2. Effects of flavonoid-rich foods (Gingko biloba, green tea and blueberries) on memory and learning in rodents

Diet Reference Rodent models Dose/feeding period Learning paradigm Learning output Mechanistic output

G. biloba Cohen-Salmon et al.(19) Young and aged 40mg/kg BW – 1–3 weeks T-maze Acquisition/learning –
50mg/kg BW – 7 months – – Mossy fibres sprouting in

the hippocampus
Hoffman et al.(208) Young 10mg/kg BW – 4 weeks MWM Short-term retention and

reversal learning
–

Williams et al.(214) Young and aged 300mg/ kg BW – 4 weeks – – Enhanced LTP in hippocampus
in aged animals

Shif et al.(18) Young 10, 20 and 40mg/kg BW – 2
weeks

MWM and RAM Acquisition in RAM –

Wang et al.(217) Aged 30; 60mg/kg BW – 4 weeks MWM Acquisition and reversal
learning

Enhanced LTP in CA1

Oliveira et al.(17) Young 0.5 and 1.0 g/kg BW – 1–7 d Fear conditioning Acquisition of fear
conditioning

Regulation of GAP-43 and CREB
gene expression

Blecharz-Klin et al.(210) Aged 50, 100 and 150mg/kg BW – 3
months

MWM Short-term retention Modulation of neurotransmitters
(5-HT and 5-HT metabolite)

Green tea Kim et al.(158) Scopolamine-induced
amnesic rat

0.2% (w/w) – 7 weeks Y-maze Short-term retention Inhibition of AChE activity

Haque et al.(12) Young 0.1; 0.5% (w/w) – 26 weeks RAM Reference and working

memory

Lower plasma concentrations of

lipid peroxides; increased plasma
ferric-reducing antioxidation power;
lower hippocampal ROS species

Li et al.(96) Aged 0.025, 0.05 and 0.1% (w/w) – 6
months

MWM Acquisition and
short-term retention

Activation of CREB and CaMKII;
increased levels of BDNF,
PSD95, Bcl-2

Li et al.(146) Senescence-accelerated
mouse prone-8

0.025, 0.05 and 0.1% (w/w) – 6
months

MWM Prevent decline in acquisition
and short-term retention

Activation of PKA/CREB pathway,
activation of CaMKII; increased
levels of BDNF, PSD95

Blueberry Joseph et al.(27) Aged 2% (w/w) – 8 weeks MWM Acquisition Increase in GTPase activity; Ca2 +

recovery and dopamina release
Joseph et al.(180) Alzheimer disease model

(APP + PS1 transgenic

mice)

2% (w/w) – 8 months Y-maze Prevention of
working-memory

deficits

Increases in carbachol-stimulated
GTPase activity; hippocampal

ERK and PhPKCa
Casadesus et al.(25) Aged 2% (w/w) – 8 weeks RAM Long-term reference

memory
Increase in levels of IGF-1 and it’s

receptor (IGF-1R), ERK activation
Andres-Lacueva
et al.(67)

Aged 2% (w/w) – 10 weeks MWM No significant effect Detection of anthocyanins in
cerebellum, cortex and
hippocampus. Performance

correlated with anthocyanins
in the brain

Shukitt-Hale et al.(183) Inflammation model
(exposure to irradiation)

2% (w/w) – 8 weeks MWM Reversal learning Increased dopamine release

Coultrap et al.(188) Young and aged 2% (w/w) – 6–8 weeks – – Elevation of LTP in aged animals
to levels seen in young; increased
phosphorylation of NR2B subunit

of gluatamate receptor (NMDAR)
Williams et al.(24) Aged 2% (w/w) – 12 weeks X-maze Acquisition/working

memory
Activation of ERK/CREB/BDNF

pathway; activation of
Akt/mTOR/Arc/Arg3.1 pathway

BW, body weight; MWM, Morris Water Maze; LTP, long-term potentiation; RAM, radial arm maze; CREB, cAMP response element binding protein; 5-HT, serotonin; AChE, acetylcholinesterase; ROS, reactive oxygen
species; CaMKII, Ca2 + /calmodulin–dependent protein kinase II; BDNF, brain-derived neurotrophic factor; PSD95, postsynaptic density protein-95; Bcl-2, B–cell lymphocytic–leukaemia proto–oncogene 2; PKA,
protein kinase A; ERK, extracellular–signal–regulated kinase; IGF-1, insulin-like growth factor 1; IGF-1R, IGF-1 receptor; NMDAR, N-methyl-D-aspartate receptor; NR2B, N-methyl-D-aspartate receptor sub-type 2B;
mTOR, mammalian target of rapamycin; GAP 43, growth associated protein 43; PhPKC, neutral sphingomyelin-specific phospholipase C.
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Blueberry and other berries

There have been many studies reporting the potential
effects of berry supplementation on spatial memory in aged
animals(27,180–183). Early studies indicated that long-term
supplementation (from 6 to 15 months of age) with berries
(blueberry or strawberry) retards age-related decrements in
cognitive and neuronal function(181). In subsequent experi-
ments, supplementation with strawberry or blueberry re-
versed age-related deficits in spatial memory in aged rats(27)

and a 2% blackberry-supplemented diet is effective in
reversing age-related deficits in motor performance and
spatial memory (MWM) when fed to aged rats (19-month-
old) for 8 weeks(182). However, among berry fruits, blue-
berries have proved most effective at improving spatial
learning and memory in old animals. Blueberries contain
high levels of a variety of anthocyanins, such as malvidin,
delphinidin, petunidin, peonidin and cyanidin(184), which
could explain the particular beneficial effects of blueberries
compared with other berries(185). However, blueberries also
contain significant amounts of flavanols, flavonols and other
phenolics, such as (- )-EC, (+ )-catechin and quercetin
(Table 1)(34), which may play a role in defining their bene-
ficial effects. Furthermore, blueberry appears to have a more
pronounced effect on short-term memory than on long-term
memory, as demonstrated by an improved performance in
several memory maze tasks, such as the MWM, eight-arm
Radial Arm Maze and an X-maze(24,27,186) (Table 2).

In addition to healthy, aged rodent models, blueberry
supplementation has also been shown to have a positive
impact on neuronal function and memory in rodent models
of accelerated aging(187). These models are characterised
by enhanced indices of oxidative stress and inflammation
along with disruption of the dopaminergic system, similar
to that observed in healthy, aged animals(187). Furthermore,
a blueberry-rich diet was also shown to be protective
in AD models (amyloid precursor protein/PS1 transgenic
mice), preventing spatial memory deficits along with
enhancement of memory-associated neuronal signal-
ling(180). In particular, blueberry-supplemented amyloid
precursor protein/PS1 mice exhibited greater levels of
hippocampal ERK activation as well as hippocampal
PKCa activation, both known to be involved in regu-
lation of synaptic plasticity and consolidation of learning
and memory(180). In agreement with this, blueberry-
supplementation (2% w/w) in aged animals has been
shown to regulate important markers of synaptic and
structural plasticity, notably ERK–CREB–BDNF and Akt–
mammalian target of rapamycin–Arc pathways along with
improvement in spatial learning in the X-maze within 3
weeks of supplementation(24) (Table 2). These pathways
are dependent on N-methyl-D-aspartate receptor activation
and play a crucial role in gene expression and de novo
protein synthesis(118). In support of this, a 6–8-week sup-
plementation with a blueberry extract resulted in improved
N-methyl-D-aspartate receptor-dependent LTP in aged
animals(188) (Table 2). Ultimately, these molecular
mechanisms underlie the typical morphological changes
that occur at the neuronal level during learning processes,
although regulation at this structural level has not been
investigated following blueberry supplementation.

On the other hand, increased ERK and insulin-like
growth factor 1 activation has been observed in the dentate
gyrus of blueberry-fed older animals and these cellular
events were associated with increased neurogenesis (pro-
liferation of precursor cells) and enhanced spatial mem-
ory(25) (Table 2). The link between dentate gyrus
neurogenesis, cognitive performance and aging is well
documented with increasing evidence showing that an
increase in neurogenesis is associated with improved cog-
nition(189–195). Physical exercise, for instance, is described
as one of the strongest neurogenic stimuli(196). Likewise,
neurogenesis may represent one mechanism by which
blueberry flavonoids improve memory by acting on the
hippocampus. Overall, there is strong evidence suggesting
that blueberry can improve memory and learning in aged
animals and that these improvements are linked to the
modulation of important structural and synaptic plasticity
markers.

Ginkgo biloba

Standardised extracts of GB leaves have been extensively
investigated for their potential to enhance memory and
cognitive function. These extracts consist of numerous
components, including flavonols (about 30%) and terpene-
lactones (7%), which are regarded as being responsible for
the observed neuroprotective properties of GB(197). Several
human interventions have reported beneficial effects of GB
in the prevention and treatment of neurodegenerative dis-
orders, such as AD, in particular, enhancement of cognitive
function(198–200), memory(201) and concentration(202,203).
Meta-analyses have also revealed significant beneficial ef-
fects of GB extract with regard to the treatment of dementia
and cognitive functions associated with AD(199,201,204). For
instance, a significant effect was found (3% difference in the
AD Assessment Scale-cognitive subtest) after a 3–6-month
treatment with 120–240 mg GB extract on objective mea-
sures of cognitive function in AD(204,205).

Early studies in rodents showed that chronic supple-
mentation with GB extract resulted in substantial improve-
ments in learning and memory in aged rodents(19,147,206,207)

(Table 2). Overall, chronic supplementation with GB seems
to improve spatial learning in a number of different tasks,
namely MWM, T-Maze and Radial Arm Maze. Although
most studies seem to show a greater effect in aged and/or
cognitively impaired animals, there are some studies show-
ing positive effects on cognitive performance in young
rodents(17,18,208,209) (Table 2). While the mechanisms
underlying the neuroprotective actions of GB are unclear,
there is some evidence showing that GB extract can regulate
the levels of neurotransmitters, such as serotonin(210), influ-
ence neurotransmitter receptors(211–213), regulate structural
changes in hippocampal circuitry(19), affect neuronal excit-
ability(214) and trigger neurogenesis in the hippocampus(215).
In addition, GB-supplemented mice show an up-regulation
of several neuromodulatory elements, such as a-amino-3-
hydroxy-5-methyllisoxazole-4-propionic acid-type gluta-
mate receptors and microtubule-associated Tau(216). These
data suggest a link between GB-induced improvements in
memory and modulation of different aspects of synaptic
plasticity. In support of this, 1 month of GB supplementation
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has been observed to increase the magnitude of LTP recor-
ded in the hippocampal CA1 area of aged rats leading to an
enhancement of spatial learning in MWM(217). More
recently, 7 d intervention with GB in young animals has been
observed to regulate hippocampal expression of the tran-
scription factor CREB(17).

Pure flavonoids

At present, the majority of the studies investigating the
impact of flavonoids on memory, learning and cognition
involve the supplementation of whole foods and beverages,
rich in a complex array of macro- and micronutrients as well
as a diverse range of different flavonoids. As such, causal
relationships between individual flavonoids and function are
difficult to establish. To address this, studies investigating
the effects of individual flavonoids are beginning to emerge
(Table 3). For example, the flavanol fisetin, typically found
in strawberries, has been shown to enhance recognition
memory in mice(218), through the activation of ERK and
induction of CREB phosphorylation as well as a facilitation
of LTP(218). Although the effect of fisetin on memory was
assessed after oral supplementation in vivo, the approach
used ex vivo to investigate the underlying mechanisms(218)

limits the interpretation of the data since it excludes crucial
factors that may affect the bioactivity of the compound, such
as absorption and metabolism.

The flavanol (- )-EC (found in cocoa, blueberry and
green tea) has been shown to improve the retention of
spatial memory in the MWM when administered in its pure
form. In the paradigms used in these studies, the effects of
(- )-EC were enhanced when combined with exercise(70)

and improvements in memory appeared to be associated
with increased angiogenesis and neuronal spine density
in the dentate gyrus of the hippocampus along with up-
regulation of genes associated with learning(70). Oral
administration of fustin, a flavonoid found in GB, has been
shown to attenuate b-amyloid induced learning impair-
ments(219), in a comparable way to that observed for EGb
761, a standard extract of GB. In agreement with data for
other flavonoid-rich foods, the ERK–CREB–BDNF path-
way was shown to be important for the M1 receptor-
mediated cognition enhancing effects of fustin(219).

Although data are currently limited, pure flavonoids
do appear to be able to induce learning and memory per-
formance in a similar manner to flavonoid-rich foods and/
or beverages. There is also evidence that pure flavonoids,
such as (- )-EC and fisetin, are able to modulate molecular
pathways necessary for memory and learning(220,221). For
example, pure (- )-EC induces both ERK1/2 and CREB
activation in cortical neurons and subsequently increases
CREB-regulated gene expression(221), while nanomolar
concentrations of pure quercetin are effective at enhancing
CREB activation(222). Such evidence suggests that it is the
flavonoids within these foods and beverages that mediate
changes in memory formation in vivo.

Summary and future perspectives

Flavonoid-rich foods such as green tea and berries appear
to be capable of influencing memory and learning through
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an ability of the flavonoids they contain to modulate and
enhance cellular events that underlie memory formation
in the hippocampus. Most notably, flavonoids have been
shown to affect different aspects of synaptic plasticity,
from regulation of receptors activation(188), modulation
of signalling pathways(24), activation of transcription
factors(96,146), regulation of gene expression and protein
expression(166,223), modulation of morphological and
structural aspects of neurons(70) and promotion of LTP(218).
Although many distinct signalling pathways are known to
be involved in learning and memory formation, flavonoid
interventions seem to interact primarily with ERK and
Akt pathways, leading to modulation of the transcription
factor CREB(24,96,146) as well as up-regulation of CREB
gene expression(17).

The data to date suggest that CREB may be a crucial
target for flavonoids. In this respect, there has been an
interest in developing drugs that target CREB leading to
enhancements in memory and learning(224). Furthermore,
the ability of these compounds to modulate neurotrophic
factors such as BDNF makes them useful targets for the
prevention of cognitive decline since these are crucial
for neuronal survival and for the protection of neurons
from injury(225). BDNF levels are known to decline during
aging and their levels have been shown to correlate with
human learning and memory(226–229), which has driven a
considerable amount of research into design drugs that
target BDNF and regulate its endogenous levels in the
brain(230). Indeed, drugs used to prevent AD such as
memantine, as well as newly developed therapeutic inter-
ventions, both target BDNF and its levels in brain regions
affected by the disease(231–233). As such, further investiga-
tion into the impact of flavonoids and flavonoid-rich foods
on levels of neurotrophins such as BDNF, is worthy of
investigation. Allied to this, a more detailed examination
of how flavonoids impact on BDNF levels in specific
regions of the hippocampus when combined with
highly specific behavioural tasks that engage preferentially
specific areas of the hippocampus may help shed additional
light on the underlying mechanisms of the action of fla-
vonoids on different aspects of the learning process.

Future studies should also consider supplementation with
pure flavonoids. A considerable level of complexity exists in
interpreting this type of experimental data, stemming from
the fact that the majority of dietary supplementation studies
use complex mixtures of ingredients (foods or beverages).
The identification of specific active molecules responsible
for the claimed benefits or potentially synergetic effects
of different compounds can help to shed light on the
mechanisms by which flavonoids act in the brain and
inform future human studies. The identification of the active
components in foods and beverages is also a crucial step to
establish a causal relationship between flavonoid intake and
improvements in memory and learning measures. This
should be paralleled with inhibitor studies to investigate
whether pathway inhibition (e.g. ERK–CREB–BDNF)
effectively blocks changes in spatial memory observed in
flavonoid-supplemented animals. Furthermore, studies are
required to establish the impact of flavonoids on structural
aspects of synaptic plasticity such as synapse growth and
dendritic spine density, events that are modulated by the

aforementioned pathways. Recent data showing that flavo-
noids can impact on aspects of neuronal structure and
morphology, such as spine density are highly promising(70).
In particular, further investigation into whether these struc-
tural changes are specific to distinct regions of the hippo-
campus will be valuable given that it is well reported
that aging leads to region- and circuit-specific losses of
connectivity in the hippocampus(95,234,235).

Since aging affects different aspects of synaptic plasti-
city, from activation of signalling pathways to structural
changes neurons, it is not surprising that flavonoids, which
also impact on these different levels of functioning,
may help ameliorate age-related memory and learning
impairments. However, there have been relatively few
investigations into the potential of flavonoid-rich diets to
improve memory and learning in young animals. Future
investigations are warranted to fully explore the impact
of flavonoids on young animal and to explore whether
common mechanism of activity exist in both young and
aged animals. Such studies will inform the design of future
experiments required to address the temporal nature of
these effects over the lifetime of an animal and clarify
whether consumption of flavonoid-rich foods delays the
onset of age-related cognitive impairments.

Overall, there is strong evidence that flavonoid-rich
foods can impact on memory and learning and that this
seems likely to involve, to some degree, regulation of
signalling cascades, leading to changes in morphological
aspects of neuronal cells, such as spine density, that ulti-
mately impact on synaptic plasticity and more sustained
LTP in the hippocampus. Future work should focus on
investigating further these mechanisms in order to establish
causal relationships between flavonoid intake, cognitive
outputs and modulation of synaptic plasticity markers.
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