39 research outputs found

    Mitochondrial energetics in liver and skeletal muscle after energy restriction in young rats

    Get PDF
    The present study investigated the effect of 2 weeks of energy restriction on whole body, liver and skeletal muscle energy handling. We measured whole-body oxygen consumption, as well as mitochondrial protein mass, respiratory capacity and energetic coupling in liver and skeletal muscle from food-restricted (FR) rats, age- and weight-matched controls. We also assessed markers of oxidative damage and antioxidant defences. The present results show that, in response to energy restriction, an adaptive decrease in whole-body energy expenditure is coupled with structural and functional changes in mitochondrial compartment, both in liver and skeletal muscle. In fact, liver mitochondrial mass per g of liver significantly increased, whereas total hepatic mitochondrial oxidative capacity was lower in FR than in control rats, because of a significant decrease in liver contribution to total body weight. In skeletal muscle, sub-sarcolemmal (SS) mitochondrial respiratory capacity, as well as SS and inter-myofibrillar (IMF) mitochondrial protein mass per g of tissue, was significantly lower in FR rats, compared to controls. Finally, a decrease in oxidative damage was found in liver but not in skeletal muscle mitochondria from FR rats, whereas an increase in antioxidant defence was found in both tissues. From the present results, it appears that skeletal muscle is involved in the decrease in energy expenditure induced by energy restriction. Energy sparing is achieved through changes in the activity (SS), mass (SS and IMF) and efficiency (IMF) of mitochondrial compartmen

    SEMA6A/RhoA/YAP axis mediates tumor-stroma interactions and prevents response to dual BRAF/MEK inhibition in BRAF-mutant melanoma

    Get PDF
    Background: Despite the promise of dual BRAF/MEK inhibition as a therapy for BRAF-mutant (BRAF-mut) melanoma, heterogeneous responses have been observed in patients, thus predictors of benefit from therapy are needed. We have previously identified semaphorin 6A (SEMA6A) as a BRAF-mut-associated protein involved in actin cytoskeleton remodeling. The purpose of the present study is to dissect the role of SEMA6A in the biology of BRAF-mut melanoma, and to explore its predictive potential towards dual BRAF/MEK inhibition. Methods: SEMA6A expression was assessed by immunohistochemistry in melanoma cohort RECI1 (N = 112) and its prognostic potential was investigated in BRAF-mut melanoma patients from DFCI and TCGA datasets (N = 258). The molecular mechanisms regulated by SEMA6A to sustain tumor aggressiveness and targeted therapy resistance were investigated in vitro by using BRAF-mut and BRAF-wt melanoma cell lines, an inducible SEMA6A silencing cell model and a microenvironment-mimicking fibroblasts-coculturing model. Finally, SEMA6A prediction of benefit from dual BRAF/MEK inhibition was investigated in melanoma cohort RECI2 (N = 14). Results: Our results indicate higher protein expression of SEMA6A in BRAF-mut compared with BRAF-wt melanoma patients and show that SEMA6A is a prognostic indicator in BRAF-mut melanoma from TCGA and DFCI patients cohorts. In BRAF-mut melanoma cells, SEMA6A coordinates actin cytoskeleton remodeling by the RhoA-dependent activation of YAP and dual BRAF/MEK inhibition by dabrafenib+trametinib induces SEMA6A/RhoA/YAP axis. In microenvironment-mimicking co-culture condition, fibroblasts confer to melanoma cells a proliferative stimulus and protect them from targeted therapies, whereas SEMA6A depletion rescues the efficacy of dual BRAF/MEK inhibition. Finally, in BRAF-mut melanoma patients treated with dabrafenib+trametinib, high SEMA6A predicts shorter recurrence-free interval. Conclusions: Overall, our results indicate that SEMA6A contributes to microenvironment-coordinated evasion of melanoma cells from dual BRAF/MEK inhibition and it might be a good candidate predictor of short-term benefit from dual BRAF/MEK inhibition

    Hepatic mitochondrial energetics during catch-Up fat with high-Fat diets rich in lard or safflower oil

    Get PDF
    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling

    Disfunzione del compartimento mitocondriale in un modello sperimentale di obesità e insulino-resistenza

    Get PDF
    Variazioni della funzionalità del compartimento mitocondriale di organi chiave del metabolismo corporeo quali il muscolo scheletrico ed il fegato innescate dalla somministrazione a lungo termine di diete iperlipidiche, inducono uno stato di obesità e di resistenza all'insulina. Il compartimento mitocondriale sia del muscolo scheletrico (mitocondri subsarcolemmatici) sia del fegato viene danneggiato con la conseguente diminuzione della capacità ossidativa, innescando un decremento dell'ossidazione dei substrati energetici, soprattutto acidi grassi. Si assiste, dunque, al deposito ectopico di triglicerdi in tali organi che è stato visto essere collegato all'insorgenza dell'insulino-resistenza. In più i due organi rispondono differentemente al danno ossidativo in quanto, mentre nel muscolo scheletrico si assiste nei ratti alimentati con la dieta iperlipidica ad una diminuzione di tale danno, nel fegato il livelli di ROS aumentano e tale aumento potrebbe indurre disfunzioni mitocondriali e anche resistenza all'insulina

    Hepatic mitochondrial energetics during catch-up fat after caloric restriction

    Get PDF
    The objective of the study was to investigate whether changes in liver mitochondrial energetics could underlie the enhanced energetic efficiency that drives accelerated body fat recovery (catch-up fat) during refeeding after caloric restriction. Rats were subjected to caloric restriction (50% of ad libitum intake) for 15 days and then refed for 1 or 2 weeks on an amount of chow equal to that of controls matched for weight at the onset of refeeding. Whole-body metabolism was characterized by energy balance and body composition determinations as well as by indirect calorimetric measurements of 24-hour energy expenditure, substrate oxidation, and whole-body de novo lipogenesis estimated from nonprotein respiratory quotient. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak (both basal and fatty acid stimulated), whereas hepatic oxidative status was assessed from measurements of hepatic mitochondrial lipid peroxidation, aconitase, and superoxide dismutase activity. Furthermore, hepatic lipogenic capacity was determined from assays of fatty acid synthase activity. Compared with controls, isocalorically refed rats showed an elevated energetic efficiency and body fat gain over both week 1 and week 2 of refeeding, as well as a lower 24-hour energy expenditure and higher rates of whole-body de novo lipogenesis at the end of both week 1 and week 2 of refeeding. Analysis of the liver revealed that after 1 week (but not after 2 weeks) of refeeding, the mitochondrial mass (but not mitochondrial density) was lower in refed rats than in controls, associated with higher state 3 mitochondrial respiratory capacity, increased superoxide dismutase activity, as well as higher fatty acid synthase activity. These results suggest that, although at the whole-body level elevations in energy efficiency and de novo lipogenesis are coordinated toward catch-up fat, the overall hepatic mitochondrial energetic status during refeeding is more consistent with a contributory role of the liver in the enhanced de novo lipogenic machinery during catch-up fat rather than in the energy-conservation mechanisms (elevated energetic efficiency) that spare energy for catch-up fat
    corecore