58 research outputs found

    D-Dimensional Radiative Plasma: A Kinetic Approach

    Get PDF
    The covariant kinetic approach for the radiative plasma, a mixture of a relativistic moving gas plus radiation quanta (photons, neutrinos, or gravitons) is generalized to D spatial dimensions. The operational and physical meaning of Eckart's temperature is reexamined and the D-dimensional expressions for the transport coefficients (heat conduction, bulk and shear viscosity) are explicitly evaluated to first order in the mean free time of the radiation quanta. Weinberg's conclusion that the mixture behaves like a relativistic imperfect simple fluid (in Eckart's formulation) depends neither on the number of spatial dimensions nor on the details of the collisional term. The case of Thomson scaterring is studied in detail, and some consequences for higher dimensional cosmologies are also discussed.Comment: 28 pages, 1 figure, uses REVTE

    Localization of gravity in brane world with arbitrary extra dimensions

    Full text link
    We study the induced 4-dimensional linearized Einstein field equations in an m-dimensional bulk space by means of a confining potential. It is shown that in this approach the mass of graviton is quantized. The cosmological constant problem is also addressed within the context of this approach. We show that the difference between the values of the cosmological constant in particle physics and cosmology stems from our measurements in two different scales, small and large.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:gr-qc/0408004, arXiv:gr-qc/0607067, arXiv:0704.1035, arXiv:0707.3558, arXiv:0710.266

    The Deformable Universe

    Full text link
    The concept of smooth deformations of a Riemannian manifolds, recently evidenced by the solution of the Poincar\'e conjecture, is applied to Einstein's gravitational theory and in particular to the standard FLRW cosmology. We present a brief review of the deformation of Riemannian geometry, showing how such deformations can be derived from the Einstein-Hilbert dynamical principle. We show that such deformations of space-times of general relativity produce observable effects that can be measured by four-dimensional observers. In the case of the FLRW cosmology, one such observable effect is shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure

    On the embedding of branes in five-dimensional spaces

    Full text link
    We investigate the embedding of four-dimensional branes in five-dimensional spaces. We firstly consider the case when the embedding space is a vacuum bulk whose energy-momentum tensor consists of a Dirac delta function with support in the brane. We then consider the embedding in the context of Randall-Sundrum-type models, taking into account Z2Z_{2} symmetry and a cosmological constant. We employ the Campbell-Magaard theorem to construct the embeddings and are led to the conclusion that the content of energy-matter of the brane does not necessarily determine its curvature. Finally, as an application to illustrate our results, we construct the embedding of Minkowski spacetime filled with dust.Comment: 12 pages - REVTEX To appear in Classical and Quantum Gravit

    Distribution of black flies (Diptera: Simuliidae) in the State of Espírito Santo, Brazil

    Get PDF
    Entre os anos de 2004 e 2008 foram realizadas coletas de Simuliidae em várias localidades no Estado do Espírito Santo, Brasil. No total, 66 córregos e rios das doze principais bacias hidrográficas do estado foram amostrados. Dezessete espécies foram coletadas, sendo que nove delas representam ocorrências novas para o estado (Simulium pertinax, S. jujuyense, S. rubrithorax, S. subnigrum, S. travassosi, S. spinibranchium, S. hirtipupa, S. lutzianum e S. anamariae), duplicando o número de espécies conhecidas no estado.We conducted a freshwater survey from 2004 to 2008 in several localities of Espírito Santo, Brazil. In total, 66 streams and rivers were sampled in the 12 hydrographic basins of the state. We collected and identified 17 species of which nine represent new records (Simulium pertinax, S. jujuyense, S. rubrithorax, S. subnigrum, S. travassosi, S. spinibranchium, S. hirtipupa, S. lutzianum e S. anamariae). These findings doubled the number of records of black fly species to the State of Espírito Santo, Brazil

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    Get PDF
    We describe a multicomponent matched filter (MCMF) cluster confirmation tool designed for the study of large X-ray source catalogues produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts 0.05 < z < 0.8 in the recently published 2RXS catalogue from the ROSAT All-Sky Survey (RASS) over the 208 deg2 region overlapped by the Dark Energy Survey (DES) Science Verification (DES-SV) data set. In our pilot study, we examine all X-ray sources, regardless of their extent. Our method employs a multicolour red sequence (RS) algorithm that incorporates the X-ray count rate and peak position in determining the region of interest for follow-up and extracts the positionally and colour-weighted optical richness λMCMF as a function of redshift for each source. Peaks in the λMCMF–redshift distribution are identified and used to extract photometric redshifts, richness and uncertainties. The significances of all optical counterparts are characterized using the distribution of richnesses defined along random lines of sight. These significances are used to extract cluster catalogues and to estimate the contamination by random superpositions of unassociated optical systems. The delivered photometric redshift accuracy is δz/(1 + z) = 0.010. We find a well-defined X-ray luminosity–λMCMF relation with an intrinsic scatter of δln (λMCMF|Lx) = 0.21. Matching our catalogue with the DES-SV redMaPPer catalogue yields good agreement in redshift and richness estimates; comparing our catalogue with the South Pole Telescope (SPT) selected clusters shows no inconsistencies. SPT clusters in our data set are consistent with the high-mass extension of the RASS-based λMCMF–mass relation

    XIPE: the X-ray imaging polarimetry explorer

    Get PDF
    Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mus. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time

    Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 <z < 1.25

    Get PDF
    We estimate total mass (M500), intracluster medium (ICM) mass (MICM), and stellar mass (M) in a Sunyaev–Zel’dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 2.5 × 1014 M and redshift 0.2 < z < 1.25 from the 2500 deg2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M are derived by fitting spectral energy distribution templates to Dark Energy Survey griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass, and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low-density environment or field surrounding the parent haloes, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called ‘missing baryons’ outside cluster virial regions
    corecore