6,315 research outputs found

    Holographic Pomeron: Saturation and DIS

    Full text link
    We briefly review the approach to dipole-dipole scattering in holographic QCD developed in ARXIV:1202.0831. The Pomeron is modeled by exchanging closed strings between the dipoles and yields Regge behavior for the elastic amplitude. We calculate curvature corrections to this amplitude in both a conformal and confining background, identifying the holographic direction with the virtuality of the dipoles. The it wee-dipole density is related to the string tachyon diffusion in both virtuality and the transverse directions. We give an explicit derivation of the dipole saturation momentum both in the conformal and confining metric. Our holographic result for the dipole-dipole cross section and the it wee-dipole density in the conformal limit are shown to be identical in form to the BFKL pomeron result when the non-critical string transverse dimension is D=3D_\perp=3. The total dipole-dipole cross section is compared to DIS data from HERA

    Classical Strongly Coupled QGP II: Screening and Equation of State

    Get PDF
    We analyze the screening and bulk energy of a classical and strongly interacting plasma of color charges, a model we recently introduced for the description of a quark-gluon plasma at T=(1-3)Tc. The partition function is organized around the Debye-Huckel limit. The linear Debye-Huckel limit is corrected by a virial expansion. For the pressure, the expansion is badly convergent even in the dilute limit. The non-linear Debye-Huckel theory is studied numerically as an alternative for moderately strong plasmas. We use Debye theory of solid to extend the analysis to the crystal phase at very strong coupling. The analytical results for the bulk energy per particle compare well with the numerical results from molecular dynamics simulation for all couplings.Comment: 9 pages, 5 figure

    Big q-Laguerre and q-Meixner polynomials and representations of the algebra U_q(su(1,1))

    Full text link
    Diagonalization of a certain operator in irreducible representations of the positive discrete series of the quantum algebra U_q(su(1,1)) is studied. Spectrum and eigenfunctions of this operator are found in an explicit form. These eigenfunctions, when normalized, constitute an orthonormal basis in the representation space. The initial U_q(su(1,1))-basis and the basis of eigenfunctions are interrelated by a matrix with entries, expressed in terms of big q-Laguerre polynomials. The unitarity of this connection matrix leads to an orthogonal system of functions, which are dual with respect to big q-Laguerre polynomials. This system of functions consists of two separate sets of functions, which can be expressed in terms of q-Meixner polynomials M_n(x;b,c;q) either with positive or negative values of the parameter b. The orthogonality property of these two sets of functions follows directly from the unitarity of the connection matrix. As a consequence, one obtains an orthogonality relation for q-Meixner polynomials M_n(x;b,c;q) with b<0. A biorthogonal system of functions (with respect to the scalar product in the representation space) is also derived.Comment: 15 pages, LaTe

    Cassavabase, an advantage for IITA cassava breeding program

    Get PDF

    Some Orthogonal Polynomials Arising from Coherent States

    Full text link
    We explore in this paper some orthogonal polynomials which are naturally associated to certain families of coherent states, often referred to as nonlinear coherent states in the quantum optics literature. Some examples turn out to be known orthogonal polynomials but in many cases we encounter a general class of new orthogonal polynomials for which we establish several qualitative results.Comment: 21 page

    Active involvement of students in co-curriculum (sports) versus generic skills

    Get PDF
    The active involvement of students in sports activities is viewed from different levels of achievement beginning with the national representation of the residential colleges, faculties, and universities in prestigious sporting events at international levels. The skills that are developed through extra-curricular activities are generic skills. The involvement of students in co-curricular activities can help to shape their generic skills, thus leading to self-promotion in the workplace. Therefore, the purpose of this research was to examine the enhancement of generic skills among engineering and technical students of UTHM who are actively involved in co-curricular activities (sports). This study will focus on identifying the factors of involvement, the level of application among students, and the perceptions of the students through their active involvement in extra-curricular activities (sports). A survey was conducted using a quantitative approach. A general questionnaire, which was designed to fulfil the objectives and to answer the research questions for this study, was distributed to 213 engineering and technical student athletes of UTHM who are actively involved in co-curricular activities (sports). It was found that the engineering and technical student athletes of UTHM agreed that their active involvement in extra-curricular activities (sports) was due to interpersonal, intrapersonal and structural factors. The results showed that out of seven generic skills, three constructs of generic skills, namely communication, teamwork and management, demonstrate a high level of application through active involvement in extra-curricular activities (sports). These findings may also help the university to focus on the development of generic skills in engineering and technical students through co-curricular activities (sports) in addition to producing athletes who are able to create a name for the university at national or international level

    Holographic Pomeron and the Schwinger Mechanism

    Get PDF
    We revisit the problem of dipole-dipole scattering via exchanges of soft Pomerons in the context of holographic QCD. We show that a single closed string exchange contribution to the eikonalized dipole-dipole scattering amplitude yields a Regge behavior of the elastic amplitude; the corresponding slope and intercept are different from previous results obtained by a variational analysis of semi-classical surfaces. We provide a physical interpretation of the semi-classical worldsheets driving the Regge behavior for (-t)>0 in terms of worldsheet instantons. The latter describe the Schwinger mechanism for string pair creation by an electric field, where the longitudinal electric field E_L=\sigma_T tanh(\chi/2) at the origin of this non-perturbative mechanism is induced by the relative rapidity {\chi} of the scattering dipoles. Our analysis naturally explains the diffusion in the impact parameter space encoded in the Pomeron exchange; in our picture, it is due to the Unruh temperature of accelerated strings under the electric field. We also argue for the existence of a "micro-fireball" in the middle of the transverse space due to the soft Pomeron exchange, which may be at the origin of the thermal character of multiparticle production in ep/pp collisions. After summing over uncorrelated multi-Pomeron exchanges, we find that the total dipole-dipole cross section obeys the Froissart unitarity bound.Comment: 17 pages, 4 figures, version 2: minor typos corrected, references adde

    A finite oscillator model related to sl(2|1)

    Get PDF
    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0<p<1) and an integer representation label j. In the (2j+1)-dimensional representations W_j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±k\pm\sqrt{k}, where k=0,1,...,j. We construct the discrete position wave functions, which are given in terms of certain Krawtchouk polynomials. These wave functions have appealing properties, as can already be seen from their plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier transform (relating position wave functions to momentum wave functions) can be constructed explicitly

    Birth and death processes and quantum spin chains

    Full text link
    This papers underscores the intimate connection between the quantum walks generated by certain spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.Comment: 14 page

    Interoperability and Reliability of Multiplatform MPLS VPN: Comparison of Traffic Engineering with RSVP-TE Protocol and LDP Protocol

    Get PDF
    One of the alternatives to overcome network scalability problem and maintaining reliability is using MPLS VPN network. In reallity, the current network is already using a multiplatform of several different hardware vendors, i.e., Cisco and Juniper platforms. This paper discusses the comparison of the simulation results to see interoperability of multiplatform MPLS VPN andreliability through traffic engineering using RSVP-TE and LDP protocols. Both the RSVP and LDP protocols are tested on a stable network and in a recovery mode,as well as non-load conditions and with additional traffic load. The recovery mode is the condition after the failover due to termination of one of the links in the network. The no-load condition means that the network is not filled with additional traffic. There is only traffic from the measurement activity itself. While network conditions with an additional load are conditions where there is an additional UDP packet traffic load of 4.5 Mbps in addition to the measurement load itself. On a stable network and without additional traffic load, the average delay on LDP protocol is 59.41 ms, 2.06 ms jitter, 0.08% packetloss, and 8.99 Mbps throughput. Meanwhile, on RSVP protocol, the average delay is 52.40 ms, 2.39 ms jitter, 12.18% packet loss, and 7.80 Mbps throughput. When failover occurs and on recovery mode, LDP protocol is48% of packet loss per 100 sent packets while on RSVP packet loss percentage is 35.5% per 100 sent packets. Both protocols have interoperability on the third layer of multiplatform MPLS VPN, but on heavy loaded traffic condition, RSVP protocol has better reliability than the LDP protocol
    corecore