6,315 research outputs found
Holographic Pomeron: Saturation and DIS
We briefly review the approach to dipole-dipole scattering in holographic QCD
developed in ARXIV:1202.0831. The Pomeron is modeled by exchanging closed
strings between the dipoles and yields Regge behavior for the elastic
amplitude. We calculate curvature corrections to this amplitude in both a
conformal and confining background, identifying the holographic direction with
the virtuality of the dipoles. The it wee-dipole density is related to the
string tachyon diffusion in both virtuality and the transverse directions. We
give an explicit derivation of the dipole saturation momentum both in the
conformal and confining metric. Our holographic result for the dipole-dipole
cross section and the it wee-dipole density in the conformal limit are shown to
be identical in form to the BFKL pomeron result when the non-critical string
transverse dimension is . The total dipole-dipole cross section is
compared to DIS data from HERA
Classical Strongly Coupled QGP II: Screening and Equation of State
We analyze the screening and bulk energy of a classical and strongly
interacting plasma of color charges, a model we recently introduced for the
description of a quark-gluon plasma at T=(1-3)Tc. The partition function is
organized around the Debye-Huckel limit. The linear Debye-Huckel limit is
corrected by a virial expansion. For the pressure, the expansion is badly
convergent even in the dilute limit. The non-linear Debye-Huckel theory is
studied numerically as an alternative for moderately strong plasmas. We use
Debye theory of solid to extend the analysis to the crystal phase at very
strong coupling. The analytical results for the bulk energy per particle
compare well with the numerical results from molecular dynamics simulation for
all couplings.Comment: 9 pages, 5 figure
Big q-Laguerre and q-Meixner polynomials and representations of the algebra U_q(su(1,1))
Diagonalization of a certain operator in irreducible representations of the
positive discrete series of the quantum algebra U_q(su(1,1)) is studied.
Spectrum and eigenfunctions of this operator are found in an explicit form.
These eigenfunctions, when normalized, constitute an orthonormal basis in the
representation space. The initial U_q(su(1,1))-basis and the basis of
eigenfunctions are interrelated by a matrix with entries, expressed in terms of
big q-Laguerre polynomials. The unitarity of this connection matrix leads to an
orthogonal system of functions, which are dual with respect to big q-Laguerre
polynomials. This system of functions consists of two separate sets of
functions, which can be expressed in terms of q-Meixner polynomials
M_n(x;b,c;q) either with positive or negative values of the parameter b. The
orthogonality property of these two sets of functions follows directly from the
unitarity of the connection matrix. As a consequence, one obtains an
orthogonality relation for q-Meixner polynomials M_n(x;b,c;q) with b<0. A
biorthogonal system of functions (with respect to the scalar product in the
representation space) is also derived.Comment: 15 pages, LaTe
Some Orthogonal Polynomials Arising from Coherent States
We explore in this paper some orthogonal polynomials which are naturally
associated to certain families of coherent states, often referred to as
nonlinear coherent states in the quantum optics literature. Some examples turn
out to be known orthogonal polynomials but in many cases we encounter a general
class of new orthogonal polynomials for which we establish several qualitative
results.Comment: 21 page
Active involvement of students in co-curriculum (sports) versus generic skills
The active involvement of students in sports activities is viewed from different levels of achievement beginning with the national representation of the residential colleges, faculties, and universities in prestigious sporting events at international levels. The skills that are developed through extra-curricular activities are generic skills. The involvement of students in co-curricular activities can help to shape their generic skills, thus leading to self-promotion in the workplace. Therefore, the purpose of this research was to examine the enhancement of generic skills among engineering and technical students of UTHM who are actively involved in co-curricular activities (sports). This study will focus on identifying the factors of involvement, the level of application among students, and the perceptions of the students through their active involvement in extra-curricular activities (sports). A survey was conducted using a quantitative approach. A general questionnaire, which was designed to fulfil the objectives and to answer the research questions for this study, was distributed to 213 engineering and technical student athletes of UTHM who are actively involved in co-curricular activities (sports). It was found that the engineering and technical student athletes of UTHM agreed that their active involvement in extra-curricular activities (sports) was due to interpersonal, intrapersonal and structural factors. The results showed that out of seven generic skills, three constructs of generic skills, namely communication, teamwork and management, demonstrate a high level of application through active involvement in extra-curricular activities (sports). These findings may also help the university to focus on the development of generic skills in engineering and technical students through co-curricular activities (sports) in addition to producing athletes who are able to create a name for the university at national or international level
Holographic Pomeron and the Schwinger Mechanism
We revisit the problem of dipole-dipole scattering via exchanges of soft
Pomerons in the context of holographic QCD. We show that a single closed string
exchange contribution to the eikonalized dipole-dipole scattering amplitude
yields a Regge behavior of the elastic amplitude; the corresponding slope and
intercept are different from previous results obtained by a variational
analysis of semi-classical surfaces. We provide a physical interpretation of
the semi-classical worldsheets driving the Regge behavior for (-t)>0 in terms
of worldsheet instantons. The latter describe the Schwinger mechanism for
string pair creation by an electric field, where the longitudinal electric
field E_L=\sigma_T tanh(\chi/2) at the origin of this non-perturbative
mechanism is induced by the relative rapidity {\chi} of the scattering dipoles.
Our analysis naturally explains the diffusion in the impact parameter space
encoded in the Pomeron exchange; in our picture, it is due to the Unruh
temperature of accelerated strings under the electric field. We also argue for
the existence of a "micro-fireball" in the middle of the transverse space due
to the soft Pomeron exchange, which may be at the origin of the thermal
character of multiparticle production in ep/pp collisions. After summing over
uncorrelated multi-Pomeron exchanges, we find that the total dipole-dipole
cross section obeys the Froissart unitarity bound.Comment: 17 pages, 4 figures, version 2: minor typos corrected, references
adde
A finite oscillator model related to sl(2|1)
We investigate a new model for the finite one-dimensional quantum oscillator
based upon the Lie superalgebra sl(2|1). In this setting, it is natural to
present the position and momentum operators of the oscillator as odd elements
of the Lie superalgebra. The model involves a parameter p (0<p<1) and an
integer representation label j. In the (2j+1)-dimensional representations W_j
of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of
the position operator is discrete and turns out to be of the form
, where k=0,1,...,j. We construct the discrete position wave
functions, which are given in terms of certain Krawtchouk polynomials. These
wave functions have appealing properties, as can already be seen from their
plots. The model is sufficiently simple, in the sense that the corresponding
discrete Fourier transform (relating position wave functions to momentum wave
functions) can be constructed explicitly
Birth and death processes and quantum spin chains
This papers underscores the intimate connection between the quantum walks
generated by certain spin chain Hamiltonians and classical birth and death
processes. It is observed that transition amplitudes between single excitation
states of the spin chains have an expression in terms of orthogonal polynomials
which is analogous to the Karlin-McGregor representation formula of the
transition probability functions for classes of birth and death processes. As
an application, we present a characterization of spin systems for which the
probability to return to the point of origin at some time is 1 or almost 1.Comment: 14 page
Interoperability and Reliability of Multiplatform MPLS VPN: Comparison of Traffic Engineering with RSVP-TE Protocol and LDP Protocol
One of the alternatives to overcome network scalability problem and maintaining reliability is using MPLS VPN network. In reallity, the current network is already using a multiplatform of several different hardware vendors, i.e., Cisco and Juniper platforms. This paper discusses the comparison of the simulation results to see interoperability of multiplatform MPLS VPN andreliability through traffic engineering using RSVP-TE and LDP protocols. Both the RSVP and LDP protocols are tested on a stable network and in a recovery mode,as well as non-load conditions and with additional traffic load. The recovery mode is the condition after the failover due to termination of one of the links in the network. The no-load condition means that the network is not filled with additional traffic. There is only traffic from the measurement activity itself. While network conditions with an additional load are conditions where there is an additional UDP packet traffic load of 4.5 Mbps in addition to the measurement load itself. On a stable network and without additional traffic load, the average delay on LDP protocol is 59.41 ms, 2.06 ms jitter, 0.08% packetloss, and 8.99 Mbps throughput. Meanwhile, on RSVP protocol, the average delay is 52.40 ms, 2.39 ms jitter, 12.18% packet loss, and 7.80 Mbps throughput. When failover occurs and on recovery mode, LDP protocol is48% of packet loss per 100 sent packets while on RSVP packet loss percentage is 35.5% per 100 sent packets. Both protocols have interoperability on the third layer of multiplatform MPLS VPN, but on heavy loaded traffic condition, RSVP protocol has better reliability than the LDP protocol
- …
