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We revisit the problem of dipole-dipole scattering via exchanges of soft Pomerons in the context of

holographic QCD. We show that a single closed string exchange contribution to the eikonalized dipole-

dipole scattering amplitude yields a Regge behavior of the elastic amplitude; the corresponding slope and

intercept are different from previous results obtained by a variational analysis of semiclassical surfaces.

We provide a physical interpretation of the semiclassical worldsheets driving the Regge behavior for

ð�tÞ> 0 in terms of worldsheet instantons. The latter describe the Schwinger mechanism for string pair

creation by an electric field, where the longitudinal electric field EL ¼ �T tanhð�=2Þ at the origin of this

nonperturbative mechanism is induced by the relative rapidity � of the scattering dipoles. Our analysis

naturally explains the diffusion in the impact parameter space encoded in the Pomeron exchange; in our

picture, it is due to the Unruh temperature of accelerated strings under the electric field. We also argue for

the existence of a ‘‘micro-fireball’’ in the middle of the transverse space due to the soft Pomeron

exchange, which may be at the origin of the thermal character of multiparticle production in ep/pp

collisions. After summing over uncorrelated multi-Pomeron exchanges, we find that the total dipole-

dipole cross section obeys the Froissart unitarity bound.
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I. INTRODUCTION

Near-forward parton-parton and dipole-dipole scattering
at high energies is sensitive to the infrared aspects of QCD.
General QCD arguments show that the resummation of a
class of t-channel exchange gluons may account for the
Reggeized form of the scattering amplitude [1], qualita-
tively consistent with the observed growth of the scattering
amplitude [2]. Nevertheless some empirical features of the
hadron-hadron scattering (e.g. the Pomeron slope) point to
the importance of nonperturbative effects.

A nonperturbative formulation of high-energy scattering
in QCD was originally suggested by Nachtmann [3] and
others [4,5] using arguments in Minkowski space. At high
energy, the near-forward scattering amplitude can be re-
duced to a correlation function of twoWilson lines (parton-
parton) or Wilson loops (dipole-dipole) in the QCD
vacuum. The pertinent correlation was assessed in leading
order using a two-dimensional sigma model with confor-
mal symmetry [4], and also the anomalous dimension of
the cross-singularity between the two Wilson lines [5].
Both analyses were carried out in Minkowski geometry,
with a close relation to QCD perturbation theory.

An Euclidean formulation was used within the stochas-
tic vacuum model through a cumulant expansion in [6] to
assess the Wilson loop correlators in Euclidean space.
Their phenomenological relevance to proton-proton scat-
tering was pursued in [7]. The instanton vacuum approach

to the parton-parton and dipole-dipole scattering ampli-
tudes was used in [8] to estimate the role of instanton-
anti-instanton configurations in both the elastic and
inelastic amplitudes. In particular, a class of singular gauge
configurations reminiscent of QCD sphalerons were shown
to be at the origin of the inelasticities. The smallness of the
Pomeron intercept was shown to follow from the smallness
of the instanton packing fraction in the QCD vacuum. The
‘‘instanton ladder’’ has been argued to generate the soft
Pomeron both at weak [9,10] and strong coupling, through
D instantons [11]. First principle considerations of the
Wilson-line correlators in Euclidean lattice gauge theory
have now appeared in [12] which may support the argu-
ments for nonperturbative physics in diffractive processes.
Elastic and inelastic scattering in holography have been

addressed initially in the context of the conformally sym-
metric AdS5 setting using Minkowskian string surface
exchanges between the Wilson-line/loops in the eikonal
approximation [13]. This approach was further exploited in
[14–17] to address the same problem in holographic QCD
with confinement [18] for quark-antiquark scattering. In
the confined Euclidean background geometry, it was as-
sumed that the most part of string worldsheet stays at the
infrared (IR) end point in the holographic direction, so that
the problem effectively reduces to the flat space one with
an effective string tension at the IR end point. The heli-
coidal surface was argued as the minimal string surface
between two Wilson lines for large impact parameter.
The inelasticities (a deviation of the amplitude from being
a pure phase) were identified through a multibranch
structure in analytic continuation from Euclidean to
Minkowski space. However, the physics picture behind
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this multibranch structure has been somewhat mysterious.
One-loop string fluctuations around the helicoidal surface
have shown to be important for addressing key aspects of
the Pomeron and Reggeon physics such as intercepts.

A more thorough study of the Pomeron problem in
the context of holography has been performed in [19].
Specifically, the Pomeron was argued to follow from a
full string amplitude in a curved geometry of holographic
QCD, including fluctuations in the holographic radial di-
rection. One of our motivations for the present work is to
clarify the relation between the approaches in [13–17] and
the one in [19], identifying the valid regime of approxima-
tions in the analysis of the former.

A compelling picture of the role of the holographic
radial direction as one varies t ¼ �q2 was presented in
[19]. As ð�tÞ � M2

KK, whereMKK denotes a mass scale of
confinement, the string worldsheet was shown to be pushed
to the UV regime along the holographic direction where
the behavior of Pomeron kernel becomes similar to the
Balitsky-Fadin-Kuraev-Lipatov [20,20,21]. The regime
ð�tÞ � M2

KK is however more model dependent, and the
string worldsheet can in principle stay close to the IR end
point. It is in this regime (soft Pomeron regime) that the
flat-space approximation in [14–17] can be justified.

Based on the same flat-space approximation for soft
Pomerons, we will attempt to compute a full closed string
exchange amplitude between two Wilson loops in dipole-
dipole scattering. The two Wilson loops with large relative
rapidity set the relevant asymptotic states in the high
energy eikonal formulation, and provide an effective
boundary condition for the exchanged closed strings. For
a small dipole size a, this boundary condition will be
argued to be similar to the one in the D0 brane scattering
problem, which allows us to compute, modulo a few subtle
differences, all the essential features of the expected
Reggeized amplitude in soft Pomeron regime.

The Regge behavior of closed string exchange in flat
space has been known for a while from the simplest
Virasoro-Shapiro amplitude of 2 ! 2 scattering.
Irrespective of the details of the external states, the closed
string exchange gives rise to a universal Pomeron kernel

s2þð�0=2Þt; (1)

where the 2 in the intercept should be replaced by D?
12 for

purely bosonic string, where D? is the number of massless
bosonic worldsheet fluctuations minus two from ghosts.
The universality of the above kernel can be understood
from the fact that it arises through semiclassical world-
sheets connecting the two high energy string states, whose

lengths in the impact parameter space b are of order b�ffiffiffiffiffiffiffiffiffiffi
lnðsÞp � 1 in units of

ffiffiffiffiffi
�0p

[22]. As b is large, the details of
the external states are not relevant in (1). A similar con-
clusion will be reached in our case of dipole Wilson loops
specifying the external states, as it should.

In this work, we intend to clarify a number of physical
issues of relevance to dipole-dipole scattering in the
diffractive regime based on stringy holography:
(1) We would like to clarify the results of [14–16],

especially the ambiguity of the multibranch struc-
ture in the variational approach. The universal result
in (1) indicates that only the minimal branch cut is
physical, while higher winding contributions are
artifacts of the variational method. Also, the slope
�0
4 and the intercept 1þ D?

96 in their results seem to

differ from (1).
(2) We would like to understand the regime of validity

of the approximations used in those works, such as
using the flat-space approximation and neglecting
the massive worldsheet fermions. We also would
like to clarify the relation to the analysis in [19].
We will elaborate on this in Sec. VI.

(3) We would like to understand the physical origin of
the universal semiclassical worldsheets that are re-
sponsible for the Pomeron kernel (1). The effective
D0 brane scattering analogue we have for a small
dipole size a turns out to be useful for this. Indeed,
via worldsheet T duality, we show that these semi-
classical worldsheets map to the stringy analogue of
worldline instantons (anti-instantons) in the
Schwinger mechanism of pair creation under an
external electric field, where the effective electric
field in our T-dual picture is induced by the relative
rapidity of the original Wilson loops. This gives us
more insight onto the nature of the semiclassical
worldsheets. Moreover, we will argue that the
Schwinger mechanism description indicates the ex-
istence of a ‘‘micro-fireball’’ in the middle of the
created string due to the Unruh temperature of an
accelerated string worldsheet, which may explain
the observed thermal multiplicity in pp collisions as
well as the diffusion behavior implied by the soft
Pomeron.

(4) Beyond the universal kernel (1), we also include the
dependence of the full amplitude on the dipole size
a, in a reasonable approximation. This is a question
of prefactor multiplying (1) that depends on the size
(virtuality) of the external dipole states. Our result is
reminiscent of the phenomenological dipole pa-
rameterization of the cross section of deep-inelastic
scattering in terms of a dipole size a and the satu-
ration momentum [23].

(5) We also consider the case of dipole Wilson loops of
higher representations. We show that this case al-
lows some of the multiwinding contributions with
winding number k � kmax, where kmax depends on
the representation. When k becomes comparable to
Nc, the N-ality becomes important and the correct
objects exchanged should be k-strings described by
D-branes, instead of simple overlapping k number
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of strings, so that the results for large k should be
modified.

In view of computing the connected expectation value of
two largely separated Wilson loops, we comment on one
aspect of our result. Indeed, we note that the semiclassical
worldsheets responsible for (1) exist for large impact pa-
rameters. They are sustained by the rapidity of the two
Wilson loops. In the case of zero rapidity, that is, for a pair
of static Wilson loops, it has been known that there is a
phase transition at large distance where semiclassical
worldsheets connecting the twoWilson loops cease to exist
[24], and one necessarily goes to the perturbative super-
gravity mode exchanges. Interestingly, this Gross-Ooguri
transition is removed in our case by a finite rapidity dif-
ference between the two Wilson loops: there always exist
semiclassical worldsheets between the two Wilson loops
with rapidity angle. In the T-dual picture, this is due to the
fact that a finite electric field always admits stringy world-
sheet instantons for any separation of two end points of the
string. One can also check, for example, in (35), that these
contributions disappear in a static limit � ! 0, conforming
to the perturbative supergravity exchange regime, thanks to
the occurrence of an essential singularity.

Although our results are based on general features of
holographic models with confinement, it is nonetheless
useful to have a reference model, especially when we
discuss the regime of validity of our approximations. We
will consider the double Wick-rotated nonextremal
D4-brane geometry by Witten [18]. This holographic
QCD with D4 branes offers a nonperturbative framework
for discussing Wilson loops in the double limit of large
number of colors Nc and ’t Hooft coupling � ¼ g2Nc. The
effective string tension at the IR end point is given by�T ¼
2

27�M
2
KK� (or �0 ¼ 1=2��T), although the expression is

model dependent and not essential for our purposes.
The outline of the paper is as follows: in Sec. II we set

the definitions for the eikonalized dipole-dipole scattering
amplitudes in the impact parameter space representation,
and review their analysis in Euclidean perturbation theory.
In Sec. III we compute the string amplitude of t-channel
closed string exchange between the two dipole Wilson
loops in holographic QCD, based on a few reasonable
assumptions. The Wilson-loop correlation function is
shown to pick up a real part (corresponding to inelasticity)
from the pole contributions generated by the rapidity twist-
ing of the bosonic zero modes. We then identify these
contributions with the semiclassical worldsheet instantons
in the Schwinger mechanism in the T-dual picture, where
the electric field is induced by the relative rapidity. We also
argue that not all contributions from multiple k > 1 wind-
ings are physical due to a difference between realD0 brane
and our Wilson loops, and one necessarily needs to trun-
cate the sum up to k ¼ kmax depending on the representa-
tion of the Wilson loops: for the fundamental
representation, kmax ¼ 1. We discuss a related interesting

issue of N-ality and k-strings in our picture. In Sec. IV, we
obtain our elastic dipole-dipole scattering amplitude from
soft Pomeron exchange in the momentum space, and dis-
cuss the phenomenology of our results. The parallel be-
tween our Pomeron and the empirical soft Pomeron
advocated by Donnachie and Landshoff are detailed in
Sec. V [44]. In Sec. VI, we examine the validity regime
of our assumptions taken in the computation. We then
show in Sec. VII that the total cross section from the
eikonal exponentiation of our results obeys the Froissart
unitarity bound. Our conclusions are in Sec. VIII.

II. PERTURBATION THEORY

We consider an elastic dipole-dipole scattering

D1ðp1Þ þD2ðp2Þ ! D1ðk1Þ þD2ðk2Þ; (2)

with a dipole size a, and s ¼ ðp1 þ p2Þ2, t ¼ ðp1 � k1Þ2,
sþ tþ u ¼ 4m2. The color and spin of the incoming/
outgoing quarks inside the dipoles are traced over.
In Euclidean signature, the kinematics is fixed by noting

that the Lorentz contraction factor translates to

cosh� ¼ s

2m2
� 1 ! cos�; (3)

where � is the Euclidean angle between the two high
energy trajectories in the longitudinal space and

coshð�=2Þ ¼ � ¼ ð1� v2Þ�1=2 in the center of mass
frame. Scattering at high energy in Minkowski geometry
follows from analytically continuing � ! �i� in the re-
gime � � logðs=2m2Þ � 1 [25]. It is convenient to con-
sider the trajectories in the impact space representation as
p1=m ¼ ðcosð�=2Þ;� sinð�=2Þ; 0?Þ, p2=m ¼ ðcosð�=2Þ;
sinð�=2Þ; 0?Þ, q ¼ ð0; 0; q?Þ and b ¼ ð0; 0; b?Þ, where q
is the t-channel momentum (t ¼ �q2? < 0) and b is the

impact parameter. (The first two coordinates are longitu-
dinal space and the ? collectively means the transverse
two-dimensional impact parameter space).
Using the eikonal approximation, Lehmann-Symanzik-

Zimmerman reduction and the analytic continuation dis-
cussed above, the dipole-dipole scattering amplitude T in
Euclidean space takes the following form [3]:

1

�2is
T ð�;qÞ�

Z
d2beiq?�bhðWð��=2;�b=2Þ�1Þ

�ðWð�=2;b=2;Þ�1Þi
¼
Z
d2beiq?�bhWð��=2;�b=2Þ

�Wð�=2;b=2Þ�1i; (4)

where

W ð�; bÞ ¼ 1

Nc

Tr

�
Pc exp

�
ig
Z
C�
d�AðxÞ � v

��
(5)

is the normalized Wilson loop for a dipole, hWi � 1. In
Euclidean geometry C� is a closed rectangular loop of
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width a that is slopped at an angle � with respect to the
vertical imaginary time direction (see Fig. 1). The two-
dimensional integral in (4) is over the impact parameter b
with t ¼ �q2?, and the averaging is over the gauge con-

figurations using the QCD action.
In (4) and (5), the dipole sizes are fixed; as such T is

their scattering amplitude. In [3], this amplitude is folded
with the target/projectile dipole distributions to generate
the pertinent hadron-hadron scattering amplitude. We note
their size a is generic for either longitudinal (aL) or trans-
verse (aT) dipole size. In general, the dipole-dipole scat-
tering amplitude depends on the orientation of the dipoles.
We expect the amplitude to be of the form:

a2 ! a2T þ a2L=sin
2ð�=2Þ: (6)

After analytic continuation to Minkowski space, the lon-
gitudinal orientation is suppressed by a power of 1=swhich
is just the Lorentz contraction factor. Throughout, a2

will refer to a2T as the longitudinal dipole orientation is
suppressed at large s.

We will assume that the impact parameter b is large in
comparison to the typical time characteristic of the
Coulomb interaction inside the dipole, i.e. b � �0 �
a=g2. As a result the dipoles are color neutral, and the
amplitude in perturbation theory is dominated by 2 gluon
exchange. Thus [8]

T ð�; bÞ � N2
c � 1

N2
c

ðgaÞ4
32�2

cotan2�

b4
; (7)

for two identical dipoles of size a with polarizations along
the impact parameter b. The analytic continuation shows
that cotan� ! 1, leading to a finite total cross section.
We note that T � ða=bÞ4�=N2

c , and thus subleading at
large Nc.

III. HOLOGRAPHIC COMPUTATION AND THE
SCHWINGER MECHANISM

In this section, diffractive dipole-dipole scattering in
holographic QCD will be pursued through closed string
exchanges between the two dipole Wilson loops. Instead of
working in the semiclassical approximation as originally
proposed in [13–16] and dictated by the tenets of holog-
raphy, in the present approach wewill attempt to compute a
full string partition function with reasonable approxima-
tions. As a consequence some of our results include sub-
leading �0 corrections such as the intercept, although the
main focus of our discussion is on the leading large �
contributions dominated by semiclassical worldsheets.
Our motivation is to identify these contributions via a
more rigorous computation compared to the variational
approaches taken in [14–16], resolving some of the issues
related to the multibranch structures in them. Also, our
computation will give us more physical insight on the
nature of these semiclassical worldsheets in terms of a
stringy version of the Schwinger mechanism with an elec-
tric field induced by the probes relative rapidity.
For small dipoles and large impact parameter b, we

assume that most of the string worldsheet stays at the IR
end point, so that we have effectively a flat space with an
effective string tension neglecting fluctuations along the
holographic direction. This approximation is based on the
generic form of the confining metric

ds2 ¼ dz2

z2fðzÞ þ
dx � dx

z2
þ � � � ; (8)

where dx � dx is the four-dimensional flat metric and � � �
stands for an extra compact space depending on a particu-
lar string theory compactification which is not important
for our argument. For confinement, the function fðzÞ has a
zero at some finite z ¼ z0 in the holographic direction. In
order to minimize its area, the string worldsheet connecting
the dipoles that are placed on the boundary z ¼ 0 and
separated by a large impact parameter b, rapidly falls
down to the IR end point z ¼ z0. At the horizon where
the string lives, the string area is measured in units set by
the effective string tension �T � 1

2��0 ¼ 1
2�l2s

1
z2
0

. For ex-

ample, for Witten’s [18] confining metric we have �T ¼
2

27�M
2
KK�. In fact, this flat-space approximation is valid

only in the regime of the soft Pomeron where ð�tÞ � M2
KK

[19], and this will be assumed throughout our paper.
Also, we will neglect the fermionic degrees of freedom

on the string worldsheet, which is a deviating point from
the analysis in [19]. This is a question of worldsheet one-
loop determinant corrections to the leading semiclassical
string partition function. It is motivated by the results in
[26] for the standard Wilson loop, where it was shown that
for the static Wilson loop (� ¼ 0), the worldsheet one-loop
contribution to the quark-antiquark Wilson loop is domi-
nated by massless bosonic degrees of freedom giving a

FIG. 1. Dipole-dipole scattering configuration in Euclidean
space. The dipoles have size a and are b apart. The dipoles
are tilted by 	�=2 (Euclidean rapidity) in the longitudinal x0xL
plane.
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Lüscher-type contribution, whereby the bosonic mode
along holographic direction and all worldsheet the fermi-
onic modes become massive and give only subdominant
contributions. In Sec. VI, a more precise condition for this
to be valid in our case will be presented, especially in
comparison to the ‘‘locality’’ assumption in [19] which
breaks down for sufficiently large � ¼ lns. Based on these
approximations, our problem effectively reduces to the one
in the flat space bosonic string theory. However, when we
discuss dipoles of higher representations at the end of the
section, the nature of gauge/gravity correspondence of
holographic QCD will be important.

The Euclidean connected dipole Wilson loops correlator

WW ¼ hWð��=2;�b=2ÞWð�=2; b=2Þ � 1i (9)

appearing in (4) gets the leading largeNc contribution from
the exchange of one closed string as in Fig. 2(a): the closed
string makes a funnel connecting the two dipole Wilson
loops. Note that the funnel has been proposed long time
ago as the geometry underlying the Pomeron exchange
within the framework of the ‘‘topological expansion’’
[27]. We would like to compute the string partition func-
tion summing over all possible fluctuations within the same
topology. This problem is different from the closed string
exchange between D-branes in a number of ways:

(1) In our case of funnels, the area inside the funnel is
empty so that the string action is reduced by that
amount, whereas for the D-brane case, there is no
such effect.

(2) In the D-brane case, multiwinding of the cylinder
topology is allowed without further large Nc sup-
pression, while it is not in the case of emission from
a string worldsheet. To have multiwinding, the
string genus has to increase leading to further 1

N2
c

suppression. This point will be relevant later when
we discuss the truncation of the multiwinding con-
tributions and the dipoles of higher representations.

As this is a difficult problem in string theory due to a
finite dipole size a, we necessarily have to make reasonable

approximations that would allow us to proceed while still
giving us all essential features of the expected result. For a
small dipole size a, the two boundaries of the funnel will
be highly pinched along the dipole direction, so that they
effectively lie on two straight lines aligned along the
direction of the Wilson loop trajectories as depicted in
Fig. 2(b). This leads to a reasonable approximation of
treating these boundaries strictly sitting on two straight
lines inside the two dipole Wilson loops, and the string
partition function over these restricted configurations can
be computed in a similar manner as in the case ofD0 brane
scattering. After that, the locations of the two boundary
lines inside each dipole will be integrated over with a
measure naturally obtained from the Polyakov string
action, which gives us the final amplitude with dependency
on the dipole size a. As our final result contains all the
expected behaviors of Regge trajectory and the intercept,
the subset of full configurations that we have chosen seems
to be large enough to contain all essential configurations
relevant in the Regge regime.
As discussed before, there are differences between the

real D0 brane scattering amplitude and the amplitude we
would like to compute. The first point in regard to the area
reduction inside the funnels is fine in our approximation
because the D0 brane cannot have a nonzero area anyway.
However, the second point is relevant and we have to
discard all higher winding contributions in our final
result as they are artifacts of D0 brane and are not the
allowed configurations in our original problem. They will
be relevant for scattering of dipoles in higher color
representations.
With these in mind, the Euclidean correlator as a string

partition function of one closed string exchange is given by

WW ¼ g2s
Z 1

0

dT

2T
KðTÞ; (10)

where

K ðTÞ ¼
Z
T
d½x
e�S½x
þghosts; (11)

is the string partition function on the cylinder topology
with modulus T (T is the circumference of cylinder when
its length is normalized to 1) with suitable boundary con-
ditions that we just discussed above, and the Polyakov
string action is

S ¼ �T

2

Z T

0
d�

Z 1

0
d�ð _x	 _x	 þ x0	x0	Þ; (12)

in a conformal gauge hab ¼ 
ab for the worldsheet metric.
The ghosts contributions follow from the diagonal gauge
fixing of the metric, and for the bosonic string it amounts to
two longitudinal ghosts. The dot refers to @� and the prime
refers to @�. The measure dT

2T is the well-known measure of

conformal classes of worldsheet metrics on the cylinder,
and the factor g2s is due to the relative genus in comparison

FIG. 2 (color online). (a) Closed string exchange as a funnel
contribution (b) Approximation similar to D0 brane scattering
with subtle differences explained in the text. The coordinates are
the same as in Fig. 1.

HOLOGRAPHIC POMERON AND THE SCHWINGER MECHANISM PHYSICAL REVIEW D 85, 105005 (2012)

105005-5



to the unconnected Wilson loops. For Witten’s geometry,
gs at the IR end point is

gs ¼ �3=2

�33=2Nc

; (13)

whose precise form is model dependent, but the 1=Nc

suppression is universal.
The integration in (11) is over periodic configurations

x	ðT;�Þ ¼ x	ð0; �Þ;
that stretch between the twisted dipole surfaces in
Euclidean space as shown in Fig. 2(b), with

cosð�=2Þx1ð�; 0Þ þ sinð�=2Þx0ð�; 0Þ ¼ 0;

cosð�=2Þx1ð�; 1Þ � sinð�=2Þx0ð�; 1Þ ¼ 0:
(14)

Here, we take the origin in the longitudinal space as the
intersection point of the two trajectories at � ¼ 0, 1 pro-
jected to the longitudinal space. As we shift the locations of
these two trajectories along the dipole separation width a,
the intersection point will move, but the relative geometry
of the two trajectories is the same, and it is easily seen that
the amplitude does not depend on these shifts. Therefore,
integrating over the dipole size a will simply give us a2

from the two dipoles, up to some unknown constant mea-
sure factor that we will discuss later. Note that this a2

dependence is a consequence of our approximation of the
pinched boundaries for the closed string funnels, but it will
be shown to be more general by the fact that the relevant

worldsheet instantons have a small width of order b=��ffiffiffiffiffiffiffiffiffiffiffi
�0=�

p
so that it is justified as long as

ffiffiffiffiffiffiffiffiffiffiffi
�0=�

p � a for a
large �. Our result is reminiscent of the dipole parametri-
zation [23] of the deep-inelastic cross section.

The twisted boundary conditions (14) are readily imple-
mented through

x0

x1

 !
¼ cosð��=2Þ � sinð��=2Þ

sinð��=2Þ cosð��=2Þ

 !
~x0

~x1

 !
; (15)

with �� ¼ �ð2�� 1Þ, and the ordinary Neumann
(Dirichlet) boundary condition for ~x0 (~x1). The longitudi-
nal x coordinates follow from the ~x coordinates by a local
rotation on the worldsheet, which implements successive
boost transformations on the worldsheet. (15) is a ruled
transformation at the origin of the helicoidal geometry. The
above transformation is useful because the string fluctua-
tion modes become purely quadratic in terms of the ~x
coordinates. The Jacobian of this transformation is 1.

A. Mode decomposition

The untwisted coordinates ~x0;1 satisfy both the periodic
and usual Neumann/Dirichlet boundary conditions on the
dipole surfaces. The quadratic action in (11) is easily
diagonalized using

~x 0ð�; �Þ ¼ Xþ1

m¼�1

Xþ1

n¼0

x0mne
i2�m�=T cosð�n�Þ;

~x1ð�;�Þ ¼ Xþ1

m¼�1

Xþ1

n¼1

x1mne
i2�m�=T sinð�n�Þ;

(16)

which shows how two parallel dipoles with � ¼ 0 (poten-
tial problem) get to the twisted dipoles with � � 0 (scat-
tering problem). A similar mode decomposition for the
potential problem using the Nambu-Goto string was origi-
nally discussed in [28]. The transverse coordinates are
untwisted with x? ¼ ~x?. They obey both the periodic
and Dirichlet boundary conditions. Their mode decompo-
sition is

~x?ð�;�Þ ¼ �b?ð1� 2�Þ=2

þ Xþ1

m¼�1

Xþ1

n¼1

x?mne
i2�m�=T sinð�n�Þ; (17)

with the impact parameter b? being two dimensional. Note
that the total x? is eight dimensional.
We note that ~x0 includes zero modes which are constant

over the � coordinate,

~x 0
ZMð�; �Þ �

Xþ1

m¼�1
ei2�m�=Tx0m0: (18)

They induce the zero modes in the original coordinates as

x0

x1

 !
ZM

¼ cosð��=2Þ � sinð��=2Þ
sinð��=2Þ cosð��=2Þ

 !
~x0

0

 !
ZM

; (19)

which is a periodic form of the helicoidal surface. We now
use the mode decompositions (16) and (17) to compute the
string propagator (11).

B. KðTÞ
Since the Polyakov action is quadratic with the above

mode expansions on the worldsheet, it can be factored out
into its basic contributors,

K ¼ KOL �K�L �Kghost �K?; (20)

where KOL, K�L represent the longitudinal zero and non-
zero mode contributions, respectively.K? is the transverse
mode contribution, and Kghost is the extra ghost contribu-

tion required by the covariant gauge fixing. Below we will
provide a detailed description of the calculation of K?
using standard zeta function regularization. The other con-
tributions follow similarly, and will only be quoted as final
results.
The transverse mode decomposition (17) once inserted

in (12) yields products of Gaussian integrals for the trans-
verse modes
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K?ðTÞ ¼ e��Tb
2T=2

Yþ1

n¼1

Yþ1

m¼�1

Z 1

�1
dx?mn

� exp

�
��T�

2

4

�
4m2

T
þ n2T

�
x?2

mn

�

¼ e��Tb
2T=2

Yþ1

n¼1

Yþ1

m¼�1

�
�T�

4T
ð4m2 þ n2T2Þ

��D?=2
:

(21)

The infinite products in (21) can be evaluated by using zeta
function regularization technique. Indeed, the infinite
product of a constant can be written as

Yþ1

n¼1

c ¼ elnc
P1

n¼1
1 ¼ e�ð0Þ lnc ¼ c�1=2; (22)

where �ðsÞ ¼ P1
n¼1 n

�s is the Riemann zeta function. In
particular this leads to

Yþ1

n¼�1
c ¼ 1; (23)

since the zero mode and nonzero mode contributions can-
cel. Similarly from analytic continuations � 0ð0Þ ¼
�1=2 lnð2�Þ and �ð�1Þ ¼ 1=12 we get

Yþ1

n¼1

n ¼ ffiffiffiffiffiffiffi
2�

p
;

Yþ1

n¼1

e�an ¼ ea=12: (24)

Finally by using the product formula for sinh

sinhð�xÞ ¼ �x
Yþ1

n¼1

�
1þ x2

n2

�
; (25)

the transverse contribution K? can be put into the form,

K?ðTÞ ¼ e��Tb
2T=2

Yþ1

n¼1

ð2 sinhðn�T=2ÞÞ�D? ; (26)

and the second identity in (24) can be used to express
K?ðTÞ in the standard form

K?ðTÞ ¼ e��Tb
2T=2��D?ðiT=2Þ; (27)

where � is the Dedekind eta function,

�ð�Þ � q1=24
Yþ1

n¼1

ð1� qnÞ; q ¼ e2i��: (28)

The longitudinal mode contribution to the string propa-
gator follows similarly by inserting (16) in the Polyakov
action (12) and carrying out the Gaussian integration. This
contribution can be separated into the zero mode contribu-
tion as given by (18) and the nonzero mode longitudinal
contribution. Specifically, the longitudinal zero mode part
contributes

K OLðTÞ ¼
Yþ1

m¼�1

�
4�2m2

T
þ �2T

��1=2 ¼ 1

2 sinhð�T=2Þ ;

(29)

while the longitudinal nonzero mode part contributes

K�LðTÞ ¼
Yþ1

m¼�1

Yþ1

n¼1

Y
s¼	

�
4m2

T
þ
�
nþ s�

�

�
2
T

��1=2

¼ Yþ1

n¼1

Y
s¼	

1

2 sinhððnþ s �
�Þ �T2 Þ

: (30)

Notice that for the longitudinal modes, �=� plays the role
of a Bohm-Aharonov phase that modifies the azimuthal
quantum number n. This observation shows that the slop-
ing or twisting of the Wilson lines in Euclidean space is
dual to an ‘‘electric/magnetic’’ field in the longitudinal
directions (electric and magnetic fields are indistinguish-
able in Euclidean space). It is this longitudinal electric field
that is at the origin of the Schwinger mechanism. A more
direct way of seeing the Schwinger mechanism via world-
sheet T duality and its worldsheet instantons will be
explained shortly.
The ghost contribution tags to the two longitudinal

nonzero mode contributions and is unaffected by the twist.
Its contribution to (20) is

K ghostðTÞ ¼
Yþ1

m¼�1

Yþ1

n¼1

�
4m2

T
þ n2T

�þ1

¼ Yþ1

n¼1

4sinh2ðn�T=2Þ: (31)

Combining all the terms (27)–(31) in (20) leads to the full
periodic propagator

KðTÞ ¼ a2=�0

2 sinhð�T=2Þ

� Yþ1

n¼1

Y
s¼	

sinhð�nT=2Þ
sinhð�ðnþ s�=�ÞT=2Þ

� e��Tb
2T=2��D?ðiT=2Þ; (32)

where we include the factor a2 from integrating over the
dipole width a. The first contribution in (32) stems from the
longitudinal zero modes, the second contribution is from
the longitudinal nonzero modes including the ghost fields,
and the final contribution arises from the D? transverse
modes.
By dimensional reasoning, there must be a 1=�0 multi-

plying a2 which should come from the integration mea-
sure. The overall unknown numeric constant of this
measure can be reabsorbed into our definition of the dipole
parameter a.
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C. WW

The contribution of (32) to the elastic dipole-dipole
amplitude at fixed impact parameter follows from inserting
it into (9). For small dipoles for which our approximations
are justified, WW takes the form

WW ¼ g2s
Z 1

0

dT

2T
KðTÞ; (33)

which shows that the elastic amplitude vanishes as the
dipole size a ! 0. The phenomenological relevance of
(33) to deep-inelastic scattering including the possible
connection to the saturation phenomena will be discussed
elsewhere.

Using (32) after the analytic continuation to Minkowski
space � ! �i� gives

WW ¼ ig2sa
2

4�0
Z 1

0

dT

T

1

sinð�T=2Þ

�Yþ1

n¼1

Y
s¼	

sinhð�nT=2Þ
sinhð�ðnþ is�=�ÞT=2Þ

� e�b2T=4��0
��D?ðiT=2Þ: (34)

The zero mode contribution in (34) develops poles along
the real T axis for sinð�T=2Þ ¼ 0 or T ¼ 2k�=�. Feynman
prescriptions for the elastic scattering amplitude requires
deforming the contour above the negative poles and below
the positive poles. For � ! 1, the contribution at the poles
is purely real

WW poles¼g2sa
2

4�0
X1
k¼1

ð�1Þk
k

��D?ðik�=�Þe�kb2=2��0
; (35)

which gives the inelasticity that we are interested in. We
note that (35) displays an essential singularity as � ! 0,
which is a hallmark of tunneling. This is related to the fact
that they are generated through worldsheet instantons via
the Schwinger mechanism as we detail below.

Since we are interested in the � ! 1 limit, the above
expression, which is written in the open string viewpoint, is
not suitable to correctly identify the limit, and one needs to
transform it to a closed string viewpoint by using the
modular relation of the Dedekind eta function, �ðixÞ ¼
�ði=xÞ= ffiffiffi

x
p

[29]. We have

��D?ðik�=�Þ ¼
�
k�

�

�
D?=2

eD?�=12k
Yþ1

n¼1

ð1� e�2�n=kÞ�D? :

(36)

Also

Yþ1

n¼1

ð1� e�2�n=kÞ�D? ¼ X1
n¼0

dðnÞe�2�n=k; (37)

exhibits a harmonic spectrum. It is the generating function
of the bosonic string level density. Asymptotically [30]

dðnÞ � e2�
ffiffiffiffiffiffiffiffiffiffiffi
D?n=6

p

nD?=4
: (38)

The exponentially rising density (38) is a hallmark of string
excitations. We note that dð0Þ ¼ 1.

D. Schwinger mechanism

In this section, we will provide a physical understanding
of the nonperturbative contributions in the exponent
of (35), that is the terms expð�kb2=2��0Þ which drive
the Regge behavior in momentum space for ð�tÞ> 0 as
we will see in Sec. IV. Recall that the k’th contribution
comes from the pole at T ¼ Tk ¼ 2�k=�, which will be
important later. The nature of these contributions indicates
that they should arise from semiclassical worldsheet in-
stantons. These worldsheet instantons bear some similar-
ities to the instantons/sphalerons advocated in [8,10] to
play an important role in diffractive scattering.
We will shed more light on this by showing that upon

worldsheet T duality these worldsheet instantons map to a
stringy version of well-known instantons in the Schwinger
mechanism of pair creation under external electric field,
where in our case the electric fields acting on the end points
of the open string is triggered by the relative rapidity of the
probes via T duality. We will find the analytic solutions for
these worldsheet instantons in the stringy Schwinger
mechanism, and show that the k’th contribution arises
from a k-wrapping worldsheet instanton solution, much
like point particles. Moreover, we will show that these
tunneling configurations last a time T ¼ Tk ¼ 2�k=�
and carry an on-shell action Sk ¼ kb2=2��0.
We start from our assumption that the two boundaries of

the cylinder worldsheet sit on the straight lines with rapid-
ity angles �=2 and��=2 for � ¼ 0, 1, respectively. These
are effectively the same boundary conditions as in the D0
brane scattering set up. At � ¼ 0 (the analysis for � ¼ 1
will be similar and we will simply present the
final result later) the boundary condition can be written
explicitly as

coshð�=2Þ@�x0 þ sinhð�=2Þ@�x1 ¼ 0;

sinhð�=2Þ@�x0 þ coshð�=2Þ@�x1 ¼ 0:
(39)

We then invoke a worldsheet T duality along the
direction x1,

@�x
1 ¼ @�y

1; @�x
1 ¼ @�y

1; (40)

to have a dual description in terms of y1. Note that the
worldsheet instantons we will present shortly are in the
zero winding/momentum sector, so that the compactifica-
tion of the x1 direction and its radius transformation in T
duality is not relevant for our purposes. This is a technical
tool to find the worldsheet instantons in the original prob-
lem. The boundary condition (39) then becomes
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coshð�=2Þ@�x0 þ sinhð�=2Þ@�y1 ¼ 0;

sinhð�=2Þ@�x0 þ coshð�=2Þ@�y1 ¼ 0;
(41)

which is easily shown to be equivalent to putting a bound-
ary term to the Polyakov action,

S ¼ �T

2

Z
d�

Z
d�ð�ð@x0Þ2 þ ð@y1Þ2 þ ð@x?Þ2Þ

þ E

2

Z
d�ðy1@�x0 � x0@�y

1Þj�¼0;1; (42)

with

E ¼ �T tanhð�=2Þ; (43)

being an electric field along the y1 direction, F10 ¼ E. This
aspect is a well-known feature of T duality in D-brane
physics. Note that the electric field acts on the two end
points of the open strings stretching between the two di-
poles. The signs of the electric fields on both ends are
opposite due to the opposite direction of motions of the two
dipoles, but the two end points of a string carry opposite
charges, so that there is a net acceleration. This explains
the existence of a Schwinger mechanism of pair creation of
strings in high energy collisions.

To find the worldsheet instantons of this stringy version
of the Schwinger mechanism, we proceed to the Euclidean
description with an action

SE ¼¼�T

2

Z T

0
d�
Z 1

0
d�ðð@x0Þ2þð@y1Þ2

þð@x?Þ2ÞþE

2

Z T

0
d�ðy1@�x0�x0@�y

1Þj�¼0;1

¼�T

2

�
I�Tþ Iu

T

�
þE

2

Z 1

0
duðy1@ux0�x0@uy

1Þj�¼0;1;

(44)

where we have changed the variable � � Tu, and I�;u are

defined by

I� �
Z 1

0
d�

Z 1

0
duðð@�x0Þ2 þ ð@�y1Þ2 þ ð@�x?Þ2Þ;

Iu �
Z 1

0
d�

Z 1

0
duðð@�x0Þ2 þ ð@�y1Þ2 þ ð@�x?Þ2Þ:

(45)

We have to find saddle the points of the action (44) with
respect to both the T integral and the worldsheet fields
ðx0; y1; x?Þ, based on the largeness of �T � E� �.

A similar problem was solved in [31], and we follow the
same steps to find the explicit solutions. The T dependence
is algebraic, and it is easy to find its saddle point as

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Iu=I�

q
: (46)

Inserting this back into (44) gives

SE¼�T

ffiffiffiffiffiffiffiffiffi
IuI�

p þE

2

Z 1

0
duðy1@ux0�x0@uy

1Þj�¼0;1; (47)

whose equations of motion are

@2�ðx0; y1; x?Þ þ I�
Iu

@2uðx0; y1; x?Þ ¼ 0; (48)

with the boundary conditionsffiffiffiffiffi
Iu
I�

s
@�ðx0; y1Þ 	 ð�1Þ� E

�T

@uðy1; x0Þj�¼0;1 ¼ 0: (49)

The Dirichlet boundary condition for x? fixes its solution
as x? ¼ b�, and for ðx0; y1Þ we write a k-wrapping
Ansatz as

x0 ¼ Rð�Þ cosð2�kuÞ; y1 ¼ Rð�Þ sinð2�kuÞ; (50)

with a �-dependent radius function Rð�Þ to be determined.
With (50), we have

Iu ¼ ð2�kÞ2
Z 1

0
d�ðRð�ÞÞ2;

I� ¼ b2 þ
Z 1

0
d�ðR0ð�ÞÞ2;

(51)

and the equation of motion for Rð�Þ is

R00ð�Þ � ð2�kÞ2 I�
Iu

Rð�Þ ¼ 0; (52)

with the boundary conditionffiffiffiffiffi
Iu
I�

s
R0ð�Þ þ ð�1Þ� 2�kE

�T

Rð�Þj�¼0;1 ¼ 0: (53)

The unique consistent solution of (51)–(53) is possible
only for k > 0, and is given by

Rð�Þ ¼ b

2arctanhðE=�TÞ coshðarctanhðE=�TÞð2�� 1ÞÞ;

¼ b

�
coshð�ð�� 1=2ÞÞ; (54)

with ffiffiffiffiffi
Iu
I�

s
¼ 2�k

2arctanhðE=�TÞ ¼ 2�k=�; (55)

where we have used (43), E ¼ �T tanhð�=2Þ. From (46)
we see that this corresponds to T ¼ 2�k=� confirming our
expectation. The value of the on-shell action SE in (44) is
also easily computed as

SE ¼ �Tð2�kÞ b
2

2�
¼ kb2

2��0 ¼ Sk; (56)

which precisely agrees with the negative of the exponent in
expð�kb2=2��0Þ. These are convincing evidences that the
Regge behavior of soft Pomeron exchange is indeed driven
by a Schwinger mechanism of pair creating strings, where
the effective electric fields are induced by the rapidity of
the projectiles.
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The circular motion of the string instanton on the
Euclidean longitudinal plane with the �-dependent radius
Rð�Þ becomes an accelerating hyperbolic motion in
Minkowski spacetime. The resulting �-dependent accel-
eration að�Þ is

að�Þ ¼ 1=Rð�Þ ¼ �

b

1

coshð�ð�� 1=2ÞÞ ; (57)

which has a maximum at the center of the string, � ¼ 1=2.
Because of this acceleration, the string feels a �-dependent
Unruh temperature,

Tð�Þ ¼ að�Þ
2�

¼ �

2�b

1

coshð�ð�� 1=2ÞÞ ; (58)

with a maximum Tm ¼ �
2�b at the center. The temperature

quickly drops to a small value around the two end points.
The existence of this finite temperature may naturally
explain the diffusion-like phenomena noted in Pomeron
physics, the details of which will be discussed elsewhere.

It is very interesting to compare the Unruh temperature
Tð�Þ with the Hagedorn temperature TH and/or deconfine-
ment transition temperature TD which characterize the
transition temperature to a plasma phase. The effective
Hagedorn temperature is given by

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2�2D?�0

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
3�T

�D?

s
¼

ffiffiffi
2

p
3�

ffiffiffiffiffiffiffiffi
�

D?

s
MKK; (59)

where the last expression is for the Witten’s geometry. The

deconfinement temperature of the same model is TD ¼ MKK

2�

[32], thus TH � TD at strong coupling. In Sec. IV where
we go to the momentum space Regge behavior, we will see
that the dominant contribution in the b integral for a fixedffiffiffiffiffiffi�t
p

comes from a region where

b�min

� ffiffiffiffiffiffiffiffiffiffiffi
2��0

q
;

1ffiffiffiffiffiffi�t
p

�
; (60)

so that we have two different cases:

(1) When
ffiffiffiffiffiffi�t

p � MKK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=27�

p
, we have b� ffiffiffiffiffiffiffiffiffiffiffi

2��0p
,

so Tm � TD, i.e. the middle region of the string
feels a temperature greater than the deconfinement
temperature when

� � 27

2�
: (61)

(2) In the other case of
ffiffiffiffiffiffi�t

p � MKK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=27�

p
, we have

b� 1=
ffiffiffiffiffiffi�t

p
, and Tm � TD when

� � MKK=
ffiffiffiffiffiffi�t

p
: (62)

Note that our soft Pomeron picture is valid when
ffiffiffiffiffiffi�t

p �
MKK, so that� � Oð1Þ can easily satisfy both (61) and (62).

To summarize, in the middle of the created string there
is a small region where the temperature is higher than
the deconfinement temperature and the string description

should be replaced by a plasma phase. As the temperature
quickly drops away from the center, the plasma size is
small: we call it ‘‘micro-fireball’’. See Fig. 3. A simple
computation gives its transverse size �x? ¼ b�� as

�x? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27=2��

q
M�1

KK ln

�
8��

27

�
; (63)

for the case 1, and

�x? � 2

�
ffiffiffiffiffiffi�t

p lnð2� ffiffiffiffiffiffi�t
p Þ; (64)

for the case 2. For large � ! 1, both become small.
This is an important observation. The existence of a

micro-fireball from a single soft Pomeron exchange can
naturally explain the observed apparent thermal nature of
multiparticle production in high energy collisions.
The Unruh radiation in QCD was previously argued to
be responsible for the apparent thermalization in
Refs. [33–36]. This phenomenon may also give a new
insight on the origin of the diffusion-like behavior in the
impact parameter space (‘‘Gribov diffusion’’) and in the
transverse momentum space. The micro-fireball is a
consequence of the nonperturbative aspects of QCD with
soft Pomerons, which is not clearly seen in the regime of
perturbative QCD.
This point can be made more transparent after inserting

(36)–(38) into (35), leading

WW poles ¼ g2sa
2

4�0
X1
k¼1

X1
n¼0

ð�1Þk
k

�
�
k�

�

�
D?=2

dðnÞe�kb2=2��0þD?�=12k�2�n=k:

(65)

and noting that

K ð�; bÞ ¼
�

k

2��0�

�
D?=2

e�kb2=2��0
; (66)

is the normalized diffusion propagator in D? dimensions,

FIG. 3 (color online). In the middle of the transverse string
worldsheet, there exists a micro-fireball with an effective Unruh
temperature that exceeds the deconfinement temperature.
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@�Kð�; bÞ ¼ Dr2
?Kð�; bÞ: (67)

The diffusion constant in rapidity space is D ¼ �0=2k. For
long strings, the diffusion propagator (66) emerges as the
natural version of the periodic string propagator in (10) and

(11) in the diffusive regime b� ffiffiffiffiffiffiffiffiffi
��0p

.

E. Truncation of the k-sum and dipoles of higher
representations

Since (65) is ultimately tied with the total cross section
in impact parameter space as in (93) below, it behooves us
to interpret the appearance of the ð�1Þk in the k-ality sum.
Schematically, the sum can be written asX

k¼1;3;5;...

e�Sk � X
k¼2;4;6;...

e�Sk : (68)

So the odd k-ality sum yields instantons, while the even
k-ality sum yields anti-instantons. Indeed, the instantons
produce pair of close strings by tunneling forward while
the anti-instantons annihilate pair of close strings by tun-
neling backward. This back-and-forth process is allowed
because there is no constraint on the bosonic pair creation
process in the Schwinger mechanism. This is not true for
the fermionic pair creation process. Incidentally, this back-
and-forth process reminiscent of instanton-anti-instanton
dynamics may be the worldsheet analogue of the sphaleron
mechanism suggested in [8]. Indeed, standard instantons
contribute e�Sk to the tunneling amplitude and e�2Sk to the
probability, prompting us to rewrite the exponents in (68)

as
ffiffiffiffiffiffiffiffiffiffiffi
e�2Sk

p
which is a sphaleron probability.

It is clear that the k’th contribution comes from the
semiclassical worldsheet which wraps the k ¼ 1 configu-
ration k times. Although these multiwinding contributions
are perfectly fine in the case of a real D0 brane scattering,
they are in fact not allowed topologically in our case of
closed string emission/absorption from the string world-
sheets of two dipole Wilson loops. To understand this we
note that we are originally summing over funnels, and
having multiple funnels on top of each other changes the
genus of the total string worldsheet, which entails further
1
N2

c
suppressions. This means that only the k ¼ 1 contribu-

tion in (65) is physical while higher winding k > 1 con-
tributions are artifacts of our D0 brane analogue. It is
interesting that a similar kind of ambiguity appeared in
the variational approach in [14–16], where one gets similar
k > 1 contributions from the multibranch structure of the
minimized Nambu-Goto action. Our discussion indicates
that these multibranch contributions arise from worldsheet
configurations that are prohibited by topology without
further 1

N2
c
suppression, and hence should be discarded at

large Nc.
Although the above conclusion is true for the Wilson

loops in the fundamental representation, the situation can
change if one considers dipole Wilson loops of higher
representations. Intuitively it is clear that the worldsheet

that a Wilson loop of higher representation bounds should
be a composite object made of multiple overlapping fun-
damental string worldsheets. When the representation is
constructed from a product of k fundamental representa-
tions, the corresponding worldsheet that bounds theWilson
loop should be a composite object made of k fundamental
strings. When k � Nc, the distinction between this object
and the simple noninteracting k fundamental strings is
small, whereas for k� Nc the composite object is quite
different from the simple sum of fundamental strings,
and it is typically described by D-branes wrapping
appropriate cycles. For example, in Witten’s geometry,
the k-antisymmetrized representation, corresponding to
k-string, is described by D4 brane wrapping the internal
S3  S4 cycle, whose string tension features Casimir scal-
ing [37]

�k ¼ �TkðNc � kÞ=ðNc � 1Þ; (69)

although the precise form of the string tension �k is model
dependent [38].
On these composite worldsheets made of kmax funda-

mental strings, it is indeed possible to attach k multiwind-
ing worldsheets of fundamental strings up to k � kmax. It is
easy to understand this as in Fig. 4. For example, if dipole
the Wilson loops in the kmax-antisymmetrized representa-
tion emit/absorb k multiwound strings, the interior of the
funnel should be a (kmax � k)-string worldsheet
by string charge conservation. This gives an inequality
k � kmax. Therefore, in the sum (65) one might keep the
terms up to k � kmax.
However, there are two subtleties regarding this. The

first one is the additional large Nc suppression as k be-
comes close to kmax. The way to count the Nc dependence
is the following. One can think of a kmax-string as a simple
sum of a kmax number of fundamental strings for the
purpose of large Nc counting. Assume that one fundamen-
tal string gets emitted from them. The emission from a
single string entails gs � 1

Nc
, and there are kmax possible

ways to attach the emitted string, so this process has kmax

Nc

FIG. 4 (color online). If the dipoles belong to a representation
with central charge kmax, then they can exchange strings with
k-ality k � kmax. Charge conservation dictates that the part of the
string worldsheet inside the dipole has k-ality kmax � k.
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factor as a coupling constant. For the two string emission

(corresponding to k ¼ 2), one has kmaxðkmax�1Þ
2N2

c
because a

single string cannot emit two strings without a large Nc

suppression. For a general k, it is kmaxCk � N�k
c . When

kmax � Nc, there is indeed no additional large Nc suppres-
sion in the summation over k for small k, but when
k� kmax it is clear that they are affected by an additional
large Nc suppression. Another subtlety is that the k’th
contribution in (65) contains the tension of k number of
strings as k�T , which can be seen in the first term in the
exponent of the second line. When k� Nc in the case of
kmax � Nc, this tension should be replaced by the suitable
k-string tension, for example (69). As a result, one can
really trust the k-sum in (65) only for small k � Nc.

IV. HOLOGRAPHY: ELASTIC AMPLITUDE

The elastic dipole-dipole scattering amplitude follows
from (4) after inserting the pole contributions (65).
Performing the integration over transverse b yields

1

�2is
T ðs; tÞ � �2g2sa

2

2

Xkmax

k¼1

X1
n¼0

ð�1Þk
k

�
�
k�

lns

�
D?=2�1

dðnÞs�2n=kþD?=12kþ�0t=2k;

(70)

with kmax depending on the representation. Although the
Gaussian b integral is dominated by the imaginary saddle
point

b ¼ i�0�
ffiffiffiffiffiffi�t

p
=k; (71)

in the real b space it is clear that the dominant region is

b�min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��0=k

q
;

1ffiffiffiffiffiffi�t
p

�
: (72)

All the n � 0 contributions from string vibrations are sup-

pressed by s�2n=k relative to n ¼ 0 contributions at large s.
Thus

1

�2is
T ðs; tÞ � �2g2sa

2

2

Xkmax

k¼1

ð�1Þk
k

�
k�

lns

�
D?=2�1

s�PkðtÞ�1

(73)

where

�PkðtÞ ¼ 1þ D?
12k

þ �0

2k
t: (74)

Therefore we have multiple Pomeron-like trajectories of
�PkðtÞ. One has �PkðtÞ>�Pðkþ1ÞðtÞ when

ð�tÞ<D?
6�0 ¼

�D?�T

3
¼ 2D?

81
M2

KK�; (75)

which is always satisfied for the soft Pomeron regime, so
that the leading Pomeron trajectory for dipole-dipole scat-
tering follows from a closed string exchange with k ¼ 1.
In [14,16] a result similar to (74) was derived for quark-

quark scattering using a classical helicoidal surface ex-
change and then corrected by one-loop bosonic quantum
fluctuations. Our construction is physically transparent as it
details the physical nature of the mechanism, and describes
the produced states at the origin of the inelasticity in
dipole-dipole scattering. The produced states are initially
heavy extended strings of typical energy EL � b�T �
bM2

KK� that ultimately decay (in 1=Nc) to lighter closed
string glueballs of energy EG �MKK�

0 [39].
The Pomeron slope for dipole-dipole scattering is �0=2.

The contribution D?=12 in the intercept is the Lüscher-
type contribution [40] noted in [16], although it differs by a
factor of 1=8 from our result. Numerically, the leading
Pomeron parameters of (74) are

ð�P1; �
0
P1Þ ¼ ð1:58; 0:45 GeV�2Þ; (76)

for D? ¼ 7 and �0 ¼ 0:9 GeV�2 from fit to heavy-
quarkonium data. They may be compared with the values
ð�P; �

0
PÞ ¼ ð1:08; 0:25 GeV�2Þ extracted experimentally

for the ‘‘soft’’ Pomeron. However, our treatment assumes
that the dipole size is small, so the appropriate intercept to
compare with is the one extracted from diffractive scatter-
ing at larger values ofQ2 where �P ’ 1:3, see e.g. [41–43].
This is usually referred to as the ‘‘hard’’ Pomeron. Also,
the value �0 ¼ 0:9 GeV�2 from heavy-quarkonium data is
model dependent, and we have not included the effect of
flavor fermions in our analysis. Another possibility is that
the experimentally observed soft Pomeron may be an
effective description of multiple Pomeron exchanges as a
result of unitarization, as we discuss in Sec. VII.

V. THE SOFT POMERON

The discrepancy in the intercept may be overall due to
the fact that in real QCD the number of transverse fluctua-
tions are effectively D? ¼ 2 and not D? ¼ 7 as suggested
by holographic QCD. Indeed, Lüscher [40] a while ago
argued that long QCD strings (relevant here at large impact
parameters) are described by an effective string action of
the scalar model with the least number of transverse de-
rivatives as the dominant universal contribution. This sca-
lar model is just the Polyakov action with D? ¼ 2. As a
result (73) simplifies to

1

�2is
T 4ðs; tÞ � �2g2sa

2

2

Xkmax

k¼1

ð�1Þk
k

s1=6kþ�0t=2k (77)

The leading Pomeron intercept is 1.16, closer to the ex-
perimental value.
The emerging (soft) Pomeron description of our dipole-

dipole analysis bears many similarities with the
Donnachie-Landshoff Pomeron [44] for k ¼ 1, with
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1

�2is
T softðs; tÞ � �ð3PF1ðtÞÞ2ð�is�0

PÞ�PðtÞ�1; (78)

and �PðtÞ ¼ 1:08þ 0:25t. The dipole form-factor is nor-
malized to F1ð0Þ ¼ 1. The soft Pomeron (78) follows from
a vector coupling to the proton through �3iPF1ðtÞ�	

with a propagator ð�is�0
PÞ�PðtÞ whereby �P is the Pomeron

spin. From (73) and for k ¼ 1, the Pomeron-to-dipole
vector coupling in holography is just

P ¼ �

3
gsa

�
�

lns

�
D?=2�1

(79)

which is constant P ¼ �gsa=3 for the Lüscher scalar
string model with D? ¼ 2. Empirically, P ¼ 1:87=GeV.

In Minkowski geometry the dipole-dipole scattering
amplitude (4) and (5) involves lightlikeWilson lines sloped
orthogonally on the light-cone and an important overall
factor of s which we have carried throughout in our analy-
sis. This extra factor of s follows from the vector character
of the gluon interaction as sourced by the lightlike Wilson
lines which is at the origin of the rewriting of the S-matrix
in terms of a WW correlator after Lehmann-Symanzik-
Zimmerman reduction. This vector coupling is best seen in
the analogue reduction of the quark-quark scattering am-
plitude by noting that

2s ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3þp1þp4�p2�

p
1s1s31s2s4

� �uðs3; p3Þ�	uðs1; p1Þ �uðs4; p4Þ�	uðs2; p2Þ; (80)

for p1;3þ; p2;4� ! 1. Also, we note that even though the

2s implies a C-odd coupling, the correlator or propagator
WW does not have a simple C-odd transformation so the
Pomeron is not a vector exchanged particle. Rather the
WW correlator suggests that it is a worldsheet made of a
coherent sum of planar gluons. In the Pomeron channel this
sum is C-even.

VI. REGIME OF VALIDITY

In this section, we estimate the regime of validity of our
holographic approximations. The flat-space approximation
where the strings are assumed to stay close to an IR end
point can be tested via the argument given in [19]. The
string motion along the holographic direction is governed
by an effective Schrödinger equation whose potential is
somewhat model dependent. The universal feature of this
potential is that it includes a positive term proportional to
ð�tÞ with a monotonic increase in the IR direction. This
implies that for a sufficiently large ð�tÞ, the IR region is
screened by a potential barrier, and the string worldsheets
are pushed toward the ultraviolet (UV) regime, where the
description presumably goes over to a Balitsky-Fadin-
Kuraev-Lipatov-type behavior. If the potential at t ¼ 0
has a local minimum at some point close to the IR end
point, which typically happens for models with confinement
and running coupling, the strings can stay close to that point

for small enough ð�tÞ such that the repulsive part propor-
tional to ð�tÞ is subdominant. The precise analysis for our
Witten’s geometry is deferred to a future work, but the
prototypical analysis in [19] suggests that the condition for
this should be ffiffiffiffiffiffi�t

p � MKK: (81)

This specifies the regime of soft Pomerons that we are
interested in.
Another important assumption in our calculations is ne-

glecting worldsheet fermions. Although the full Green-
Schwarz action for models with confinement is not known
yet, the analysis in [26] showed that the Green-Schwarz
worldsheet fermions get massive due to couplings to the
background Ramond-Ramond flux. In the gauge where the
string worldsheet coordinates coincide with the spacetime
coordinates that the string is embedded, the masses of the
fermions are shown to be roughly the mass scale of the
glueballs, which is MKK for Witten’s geometry. We now
estimate precisely when we can neglect the additional effects
from these massive worldsheet fermions in our result.
The worldsheet fermions do not affect the classical

worldsheet instantons and their classical action. In the
exponent of the result (65) [it is enough to consider k ¼
1, n ¼ 0 for our purpose], �b2=2��0 is therefore not
affected by fermions. The contribution D?�=12 to the
intercept, comes from quantum 1-loop fluctuations of
worldsheet bosons, and in principle worldsheet fermions
can affect this result through the 1-loop determinant in-
duced by their fluctuations.
The classical instanton for k ¼ 1 appears at T ¼ 2�=�

as we saw in previous sections. Note that the range of � on
the worldsheet was normalized to 1 before. In the space-
time picture, the string is extended by the distance b trans-
versely, so to match the string worldsheet coordinates with
the spacetime coordinates keeping the conformal gauge,
one has to rescale the string coordinates by a factor of b
(Weyl transformation), so that the ranges of ð�; �Þ are
ðb; 2�b=�Þ respectively. The classical Polyakov action in
this gauge is simply the area times �T=2 which reproduces
b2=2��0. The mass of the worldsheet fermions is of order
of MKK in this coordinate gauge.
The contribution to the intercept D?�=12 arises as the

Casimir energy or Lüscher correction from the bosonic
fluctuations on this string worldsheet. Note that the range
of � is much larger than the range of � for large �, so one
should think of � as space and � as time in this analogy to
the Lüscher correction to the potential. Let us consider the
range of � as an effective length L ¼ 2�b=�. Then
D?�=12 can be understood as a Lüscher type contribution

D?�
12

¼ �D?
6

b

L
¼ b � VðLÞ: (82)

The massive fermions of mass MKK contribute to the
potential VðLÞ an amount [26]
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VðLÞF �D?

ffiffiffiffiffiffiffiffiffiffi
MKK

L

s
e�2MKKL: (83)

Using (72), b�minð ffiffiffiffiffiffiffiffiffiffiffi
2��0p

; 1ffiffiffiffiffi�t
p Þ, the condition VFðLÞ �

VðLÞ becomes equivalent to

ffiffiffiffi
�

p � 72

�

ffiffiffiffiffiffi
27

2�

s
e�8�

ffiffiffiffiffiffiffiffiffiffiffiffi
27=2��

p
; (84)

for the case b� ffiffiffiffiffiffiffiffiffiffiffi
2��0p

, and

� � 72

�

MKKffiffiffiffiffiffi�t
p e�8�MKK=�

ffiffiffiffiffi�t
p

; (85)

for the case b� 1=
ffiffiffiffiffiffi�t

p
. For sufficiently large � ! 1,

both (84) and (85) are satisfied. This justifies our approxi-
mation of neglecting the fermionic contributions to the
intercept.

To compare these conditions to those discussed in [19],
let us restrict the analysis to

ffiffiffiffiffiffi�t
p ¼ 0 for simplicity. Thus,

the dominant contribution to the b integration in the scat-
tering amplitude stems from

b�
ffiffiffiffiffiffiffiffiffiffiffi
2�0�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27�=2�

q
M�1

KK: (86)

which is the diffusion length. This b characterizes the size
of a typical string worldsheet in the functional integral. In
the regime where this size is smaller than the curvature
scale of the geometry at the IR end point, the strings feel a
locally flat ten-dimensional space, and the proper string
theory is the critical ten-dimensional superstring theory
including worldsheet fermions. The worldsheet fermion
masses become irrelevant, and the locality assumption in
[19] is valid in this regime. The resulting intercept, now
coming from a full critical string theory, is 2 as in (1) [19].
This is the maximal spin of the massless states exchanged
(in ten dimensions), which are the spin 2 gravitons.

The proper length of �x? � b at the IR end point in
Witten’s geometry is

bproper ¼ bðUKK=RÞ3=4 �
ffiffiffiffiffiffi
2�

p
ls; (87)

using (86) and

R3 ¼ �l2s=2MKK; UKK ¼ 2MKK�l
2
s=9: (88)

Here we changed the holographic coordinate in (8) as z ¼
ðR=UÞ3=4 and z0 ¼ ðR=UKKÞ3=4. The curvature scale from
the size of the internal S4 is given by

Lc ¼ ðR=UKKÞ3=4UKK ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
ls; (89)

so that the condition bproper � Lc translates to

� � �=6: (90)

One should also compare b with the Kaluza-Klein scale
M�1

KK that characterizes the 4D masses of glueballs upon
compactification to four dimensions. Only when b � M�1

KK,

one can neglect the existence of the compact holographic
direction, and justify the locality assumption in [19]. From
(86), this yields

� � 2�=27; (91)

which is similar to (90). Only in the regime satisfying (90)
and (91), the locality assumption and the intercept close to
2 (modulo further 1=� corrections) in [19] are justified.
As one increases � above the bounds (90) and (91), the

size of the worldsheet b is large enough to invalidate the
ten-dimensional locality, and the intercept starts deviating
from 2. The string worldsheets start feeling the curvatures
of the geometry, the existence of a confining scale, and the
supersymmetry breaking. Although the dynamics along the
holographic direction and its effect on the intercept were
studied at the border of the conditions (90) and (91) (i.e.
�� �) in [19], it is generally hard to analyze these effects
for � � �. This limit is relevant to diffractive physics in
general and the Pomeron, in particular.
Qualitatively, when b � M�1

KK (� � �), the masses of
the four-dimensional glueballs of order MKK from the
Kaluza-Klein reduction of ten-dimensional gravitons
are important. Indeed, the exchanged Pomerons at low
ð�tÞ � 0 can no longer be thought of as ten-dimensional
massless spin 2 gravitons in this regime as they are re-
placed by four-dimensional massive spin 2 glueballs.
Whether the t > 0 spectrum still governs the small
ð�tÞ � 0 regime and thus the intercept is not a trivial
question. When (90) and (91) are satisfied, it is clear that
the Regge trajectory from approximately the ‘‘local’’
ten-dimensional amplitude smoothly connects ð�tÞ � 0
and the t > 0 spin 2 glueball spectrum as in [19], leading
to an intercept close to 2. However, outside the parameter
range (90) and (91), it is not really possible to infer any-
thing about ð�tÞ � 0 from the t > 0 spectrum. We do not
know how to compute the full string amplitude in this
regime. It is very likely that the intercept should come
from a different physics unrelated to spin 2. Equivalently,
this also means that a simple sum of supergravity field
exchanges as in [45] cannot give the right intercept, as
these massive modes are away from the t ¼ 0 region.
For small ð�tÞ � 0, we have seen that the imaginary

part of the amplitude is governed by our worldsheet in-
stantons. What we showed was that the worldsheet theory
of these instantons for large � satisfying (84) and (85) is
approximately bosonic, indicating a transition from super-
string to an effective bosonic string description with a
proper D? perhaps as advocated by Lüscher. The resulting
intercept is naturally far from 2 by a number of order 1. The
conditions (84) and (85) requiring a large � for the validity
of this is consistent with the breakdown of (90) and (91) for
a superstring description. Our analysis suggests that what
is responsible for a low ð�tÞ � 0 Pomeron trajectory origi-
nates from this noncritical bosonic effective string theory.
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VII. FROISSART BOUND

Both (73) and (77) for the scattering amplitude violate
unitarity as s ! 1. The reason is the one Pomeron ex-
change approximation to the exact dipole-dipole correlator
(10), which can break down for sufficiently large s. One
conventional way of curing this is to sum over all multi-
Pomeron exchanges by exponentiating (10), neglecting
inter-Pomeron interactions as an approximation. Because
of g2s in front of (10), this is tantamount to summing a
subset of 1=N2

c corrections in relation to the unitarity
bound. The resulting scattering amplitude reads

1

2is
T ðs; tÞ ¼

Z
d2beiq�bð1� expðWWpolesÞÞ; (92)

where theWWpoles contribution in the exponent is given by

(65). The total cross section follows by the optical theorem

�totðsÞ ¼ 2
Z

d2bð1� expðWWpolesÞÞ: (93)

Inspecting our result (65), the integrand in (93) becomes
vanishingly small when b � bmax with

b2max ¼ D?�0

6
�2; (94)

for large s ! 1 limit. This is due to the fact that the
contribution to WWpoles becomes exponentially small

when b � bmax from the exponential structure of (65).
On the other hand, for b � bmax, the contribution
WWpoles becomes large and negative in the s ! 1 limit,

causing the integrand in (93) to be 1. Therefore, b ¼ bmax

specifies a sharp transition of the integral in (93), similar to
a black disc. Thus

�totðsÞ � 2
Z bmax

d2b ¼ �D?�0

3
�2: (95)

The total cross section (95) saturates the Froissart unitarity
bound, i.e. �totðsÞ � �2 [46].

This unitarization of the scattering amplitude at high
energies leads to the replacement of the ‘‘bare’’ Pomeron
characterized by the parameters (76) by the ‘‘dressed’’
Pomeron with a smaller effective intercept. This may be
at the origin of the apparent discrepancy between the
intercept (76) and the experimental one. At very high
energies, the increase of the cross section becomes loga-
rithmic, thereby offering an alternative mechanism for the
reduction of the effective intercept.

VIII. CONCLUSIONS

In holographic QCD, the inelasticity in the dipole-dipole
scattering amplitude arises from the t-channel exchange of
closed bosonic strings of N-ality k between the dipole
worldsheets. The Pomeron emerges as a stringy realization
of the Schwinger mechanism in the triple limit Nc � � �
� � 1 sequentially. The quantum creation process fixes

not only the Pomeron slope, but also its intercept and
weight (‘‘residue’’) in the elastic amplitude. Our result
for dipole-dipole scattering is similar to the one initially
derived in [14,16] using semiclassical arguments for
quark-quark scattering, but not identical. In particular,
the Pomeron slope and the intercept is found to be 2 and
8 times larger, respectively. The semiclassical arguments
are related to our stringy instantons of the Schwinger
mechanism. In a striking way, the Schwinger pair creation
process is at the origin of the string instability observed
initially in Minkowski space in [13].
We have noted that in our analysis the Pomeron couples

vectorially, and it is far from a spin 2 t-channel pole. The
graviton is the starting point in the analysis of [19], which
is explicit in the amplitude (1) quoted in the introduction.
The key difference between the two analyses and therefore
the results is in their starting point which is tied to the
nature of the probes used. In our analysis which follows the
initial holographic work in [13–16], is based on the dipole-
dipole scattering reduction formula (4) and (5) where an
explicit use of the vector character of the QCD gluon
coupling was made [3]. The appearance of the 2s factor
as also explained in (80) is a consequence of this reduction.
As a result, the Pomeron exhibits a vector coupling to the
dipole worldsheet from the start, which is a welcome
empirical feature of our analysis. In contrast, the closed
string Virasoro-Shapiro amplitude used in [19] does not
rely on this reduction for the description of the Pomeron. It
is an alternative way to describe the Pomeron starting from
the graviton tensorial coupling of s2=t in flat space and
correcting for the spin, coupling and pole location through
a 1=� and curvature. Amusingly, our analysis breaks down
at small b and/or �< �, while the analysis in [19] breaks
down at large b and/or �> �. These analyses are thus
different holographic approximations to QCD diffraction
at high energy.
In many ways our analysis is similar to that carried out

by Bachas [47] for D0-brane scattering in flat space string
theory. While our Wilson-loop dipoles in holographic
QCD are not D-branes, the stringy bosonic exchange for
the Pomeron bears some similarities. In particular the
emergence of the pole-structure in (34) is solely due to
the twisted bosonic string zero modes. The effect of the
twist due to rapidity is, by a T-duality transformation,
analogous to the effect of an electric field living on the
dipole worldsheet, leading to a Bohm-Aharonov effect in
the longitudinal string spectrum.
We have shown that the T-dual induced longitudinal

electric field causes an Unruh acceleration and thus an
Unruh temperature. As a result, a ‘‘micro-fireball’’ forms
which maybe at the origin of the transverse diffusion of the
string and thus of the Pomeron in the impact parameter
space description. This ‘‘micro-fireball’’ may explain the
thermal character of multiparticle production in high en-
ergy hadronic collisions and may seed the ‘‘firework’’ in
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AA collisions at ultrarelativistic energies as probed by
RHIC and LHC. These observations will be analyzed and
extended elsewhere.

We have noted that the universality arguments put for-
ward long ago by Lüscher [40] suggest that the use of the
Polyakov action in flat spacetime dimension with D? ¼ 2
(scalar model) may be universal for the description of
dipole-dipole scattering at large impact parameter. The
ensuing scattering amplitude bears a leading Pomeron
trajectory for Nc ¼ 3 and strong coupling � for dipoles
in the fundamental representation, which is comparable to
the Pomeron trajectory inferred from experiment. We have
shown that the eikonalization of the exact expression for
the dipole-dipole correlator yields a total cross section for
dipole-dipole scattering that is consistent with the Froissart

unitarity bound. Our results can be improved in a number
of ways, for example, by considering the effects of the
holographic direction (curvature) in the string propagator.
Indeed, by being transverse this holographic direction is
likely to exhibit transverse curved diffusion as noted in
[19]. This point and others will be addressed elsewhere.
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