52 research outputs found

    BACTIBASE: a new web-accessible database for bacteriocin characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriocins are very diverse group of antimicrobial peptides produced by a wide range of bacteria and known for their inhibitory activity against various human and animal pathogens. Although many bacteriocins are now well characterized, much information is still missing or is unavailable to potential users. The assembly of such information in one central resource such as a database would therefore be of great benefit to the exploitation of these bioactive molecules in the present context of increasing antibiotic resistance and natural bio-preservation need.</p> <p>Description</p> <p>In the present paper, we present the development of a new and original database BACTIBASE that contains calculated or predicted physicochemical properties of 123 bacteriocins produced by both Gram-positive and Gram-negative bacteria. The information in this database is very easy to extract and allows rapid prediction of relationships structure/function and target organisms of these peptides and therefore better exploitation of their biological activity in both the medical and food sectors.</p> <p>Conclusion</p> <p>The BACTIBASE database is freely available at <url>http://bactibase.pfba-lab.org</url>, web-based platform enabling easy retrieval, via various filters, of sets of bacteriocins that will enable detailed analysis of a number of microbiological and physicochemical data.</p

    High-throughput characterization of the effect of sodium chloride and potassium chloride on 31 lactic acid bacteria and their co-cultures

    Get PDF
    Salt (NaCl) is associated with a risk of hypertension and the development of coronary heart disease, so its consumption should be limited. However, salt plays a key role in the quality and safety of food by controlling undesirable microorganisms. Since studies have focused primarily on the effect of salts on the overall counts of the lactic acid bacteria (LAB) group, we have not yet understood how salt stress individually affects the strains and the interactions between them. In this study, we characterized the effect of sodium chloride (NaCl) and potassium chloride (KCl) on the growth and acidification of 31 LAB strains. In addition, we evaluated the effect of salts on a total of 93 random pairwise strain combinations. Strains and co-cultures were tested at 3% NaCl, 5% NaCl, and 3% KCl on solid medium using an automated approach and image analysis. The results showed that the growth of LAB was significantly reduced by up to 68% at 5% NaCl (p &lt; 0.0001). For the co-cultures, a reduction of up to 57% was observed at 5% NaCl (p &lt; 0.0001). However, acidification was less affected by salt stress, whether for monocultures or co-cultures. Furthermore, KCl had a lesser impact on both growth and acidification compared to NaCl. Indeed, some strains showed a significant increase in growth at 3% KCl, such as Lactococcus lactis subsp. lactis 74310 (23%, p = 0.01). More importantly, co-cultures appeared to be more resilient and had more varied responses to salt stress than the monocultures, as several cases of suppression of the significant effect of salts on acidification and growth were detected. Our results highlight that while salts can modulate microbial interactions, these latter can also attenuate the effect of salts on LAB

    BACTIBASE second release: a database and tool platform for bacteriocin characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BACTIBASE is an integrated open-access database designed for the characterization of bacterial antimicrobial peptides, commonly known as bacteriocins.</p> <p>Description</p> <p>For its second release, BACTIBASE has been expanded and equipped with additional functions aimed at both casual and power users. The number of entries has been increased by 44% and includes data collected from published literature as well as high-throughput datasets. The database provides a manually curated annotation of bacteriocin sequences. Improvements brought to BACTIBASE include incorporation of various tools for bacteriocin analysis, such as homology search, multiple sequence alignments, Hidden Markov Models, molecular modelling and retrieval through our taxonomy Browser.</p> <p>Conclusion</p> <p>The provided features should make BACTIBASE a useful tool in food preservation or food safety applications and could have implications for the development of new drugs for medical use. BACTIBASE is available at <url>http://bactibase.pfba-lab-tun.org</url>.</p

    The Impact of Chitosan-Divergicin Film on Growth of Listeria monocytogenes in Cold-Smoked Salmon

    Get PDF
    The aim of this study was to evaluate the impact of chitosan film, with bacteriocin divergicin 35 incorporate, on growth of Listeria monocytogenes in Cold smoked salmon. The simples of Cold-smoked wild salmon were inoculated with L. monocytogenes and treated with chitosan (100 kDa, 94.7% de-acetylated) and divergicin M35 was stored for 3 weeks at 4–8°C. The compounds were applied to the fish flesh in the form of solution or dried film. The film reduced L. monocytogenes to below the detection limit (&lt;50 cfu/g) and kept total counts below 104 cfu per g compared to 109 cfu per g in control samples while the effectiveness of the solution was very limited. The inhibitory activity of the film lasted for 3 weeks, while the solution had no effect on L. monocytogenes counts measured on day 14. The film provided a better preservation of fish color (redness) and firmness than others treatments, while the solution had little impact on these parameters. It kept the volatile basic nitrogen (17.5 mg N/100 g) below the control value 29.9 mg N/100 g. Divergicin-loaded chitosan film thus may represent an interesting alternative for the bio-preservation of cold-smoked fish

    Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia

    Get PDF
    The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the blaCMY-2 and blaTEM-1 genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits

    Unravelling the Potential of Lactococcus lactis Strains to Be Used in Cheesemaking Production as Biocontrol Agents

    Get PDF
    This research, developed within an exchange program between Italy and Canada, represents the first step of a three-year project intended to evaluate the potential of nisin-producing Lactococcus lactis strains isolated from Italian and Canadian dairy products to select a consortium of strains to be used as biocontrol agents in Crescenza and Cheddar cheese production. In this framework, the acidification and the production of nisin in milk, and the volatile molecule profiles of the fermented milk, were recorded. The strains were further tested for their anti-Listeria monocytogenes activity in milk. The data obtained highlighted good potential for some of the tested strains, which showed production of nisin beginning within 12 h after the inoculation and reaching maximum levels between 24 and 48 h. The highest inactivation levels of L. monocytogenes in milk was reached in the presence of the strains 101877/1, LBG2, 9FS16, 11FS16, 3LC39, FBG1P, UL36, UL720, UL35. The strains generated in milk-specific volatile profiles and differences in the presence of fundamental aromatic molecules of dairy products, such as 2-butanone and diacetyl. The results highlight the interesting potential of some L. lactis strains, the producer of nisin, to be further used as biocontrol agents, although the strains need to be tested for interaction with traditional thermophilic starters and tested in real cheesemaking conditions

    Fate and Biological Activity of the Antimicrobial Lasso Peptide Microcin J25 Under Gastrointestinal Tract Conditions

    Get PDF
    The bacteriocin microcin J25 (MccJ25) inhibits the growth of Gram-negative pathogens including Salmonella and Shigella species, and Escherichia coli. This 21-amino acid peptide has remarkable stability to heat and extreme pH values and resistance to many proteases, thanks to a characteristic lasso structure. In this study, we used the dynamic simulator TIM-1 as gastro-intestinal tract model to evaluate the stability and antibacterial activity of MccJ25 during passage through the proximal portion of the human gastrointestinal tract. MccJ25 concentration was measured in the different simulator sections by HPLC, and inhibition of Salmonella enterica serotype Enteritidis was evaluated using qualitative and quantitative assays. LC-MS/MS analysis and subsequent molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS) and analysis of the peptide degradation in the presence of proteolytic enzymes mimicking the gastro-intestinal conditions permitted to delineate the fate of MccJ25 through identification of the main degradation products. MccJ25 was relatively stable under gastric conditions, but degraded rapidly in the compartment mimicking the duodenum, notably in the presence of pancreatin. Among pancreatin components, elastase I appeared primarily responsible for MccJ25 breakdown, while α-chymotrypsin was less efficient
    corecore