23 research outputs found

    Nasotracheal enterococcal carriage and resistomes: detection of optrA-, poxtA- and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain

    Get PDF
    This study determined the carriage rates and antimicrobial resistance (AMR) genes of enterococci from nasotracheal samples of three healthy animal species and in-contact humans. Nasal samples were collected from 27 dog-owning households (34 dogs, 41 humans) and 4 pig-farms (40 pigs, 10 pig-farmers), and they were processed for enterococci recovery (MALDI-TOF–MS identification). Also, a collection of 144 enterococci previously recovered of tracheal/nasal samples from 87 white stork nestlings were characterized. The AMR phenotypes were determined in all enterococci and AMR genes were studied by PCR/sequencing. MultiLocus-Sequence-Typing was performed for selected isolates. About 72.5% and 60% of the pigs and pig-farmers, and 29.4% and 4.9%, of healthy dogs and owners were enterococci nasal carriers, respectively. In storks, 43.5% of tracheal and 69.2% of nasal samples had enterococci carriages. Enterococci carrying multidrug-resistance phenotype was identified in 72.5%/40.0%/50.0%/23.5%/1.1% of pigs/pig-farmers/dogs/dogs’ owners/storks, respectively. Of special relevance was the detection of linezolid-resistant enterococci (LRE) in (a) 33.3% of pigs (E. faecalis-carrying optrA and/or cfrD of ST59, ST330 or ST474 lineages; E. casseliflavus-carrying optrA and cfrD); (b) 10% of pig farmers (E. faecalis-ST330-carrying optrA); (c) 2.9% of dogs (E. faecalis-ST585-carrying optrA); and (d) 1.7% of storks (E. faecium-ST1736-carrying poxtA). The fexA gene was found in all optrA-positive E. faecalis and E. casseliflavus isolates, while fexB was detected in the poxtA-positive E. faecium isolate. The enterococci diversity and AMR rates from the four hosts reflect differences in antimicrobial selection pressure. The detection of LRE carrying acquired and transferable genes in all the hosts emphasizes the need to monitor LRE using a One-Health approach

    The population-level impact of Enterococcus faecalis genetics on intestinal colonization and extraintestinal infection

    Get PDF
    IMPORTANCE: Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium

    Citizen Contribution for Searching for Alternative Antimicrobial Activity Substances in Soil

    No full text
    Antimicrobial resistance (AMR) is problematic worldwide, and due to the loss of efficiency of many antibiotics, the pressure to discover alternative antimicrobial molecules has increased. Soil harbors a great biodiversity and biomass of microorganisms, and many antibiotics are produced by soil microbiota. Therefore, soil is a promising reservoir to find new antimicrobial agents. In this respect, novel pedagogical strategies regarding the AMR global crisis have recently been developed in different countries worldwide. Highlighted is the service-learning project “MicroMundo” integrated in a global Citizen Science project called “Tiny Earth”. Hence, the present work aimed at determining the antimicrobial activity of soil bacteria, the biodiversity of the selected isolates as putative antimicrobial producers, and their antibiotic resistance profile. Moreover, through the MicroMundo project, we tried to illustrate the relevant link between science and education and the benefits of implementing service-learning methodologies to raise awareness of the AMR problem and to contribute to the search for new alternatives. A total of 16 teachers, 25 university students and 300 secondary school students participated in the search for antimicrobial activity on a collection of 2600 isolates obtained from a total of 130 soil samples analysed. In total, 132 isolates (5% of total tested) were selected as potential antimicrobial producers when two indicator bacteria were used (Escherichia coli and Staphylococcus epidermidis); the most frequent genus among these isolates was Bacillus, followed by Pseudomonas, Paenibacillus and Serratia. The antimicrobial activity (AA) of the 132 potential antimicrobial producers was studied in a second step against 15 indicator bacteria (of six genera and thirteen species, including relevant pathogens). Of the 132 potentially producing bacteria, 32 were selected for further characterization. In this respect, 18 isolates showed low AA, 12 isolates were considered as medium producers, and 2 highly antimicrobial-producing isolates were found (Brevibacillus laterosporus X7262 and Staphylococcus hominis X7276) showing AA against 80% of the 15 indicators tested. Moreover, 48% of the antimicrobial-producing bacteria were susceptible to all antibiotics tested. Due to citizen science, antimicrobial-producing bacteria of great interest have been isolated, managing to raise awareness about the problem of AMR

    MicroMundo: experimental project fostering contribution to knowledge on antimicrobial resistance in secondary school

    No full text
    Antimicrobial resistance (AMR) has become a serious global health threat. Education could play a decisive role, so the scope of innovative educational projects, such as MicroMundo, should be analysed. MicroMundo is a service-learning project for the exploration of microbial biodiversity in soils in search of new antibiotics. In order to evaluate the contribution of MicroMundo to the improvement of knowledge about AMR as well as the optimal age of the participants, an open questionnaire before and after the educational intervention (for secondary school students) and a satisfaction survey (for all participants) were carried out. Programme instruction began in university and continued through secondary school; 14 teachers (phase 1) and 137 students from three educational levels (phase 2) participated. MicroMundo was successfully implemented, showing a statistically significant improvement in knowledge about antibiotics, resistance, health and environmental consequences, and possible measures to reverse the problem, at all educational levels. Furthermore, the satisfaction surveys revealed a growing interest in research and science. Therefore, students of general branches who have not yet opted for a scientific line would be the most suitable to conduct the programme. In conclusion, MicroMundo is recommended as a training method to raise awareness about AMR and promote scientific vocations
    corecore