8 research outputs found

    The integer quantum Hall effect of a square lattice with an array of point defects

    Get PDF
    The electronic properties of a square lattice under an applied perpendicular magnetic field in the presence of impurities or vacancies are investigated by the tight-binding method including up to second nearest neighbor interactions. These imperfections result in new gaps and bands in the Hofstadter butterfly even when the second order interactions break the bipartite symmetry. In addition, the whole spectrum of the Hall conduction is obtained by the Kubo formula for the corresponding cases. The results are in accordance with the Thouless-Kohmoto-Nightingale-den Nijs integers when the Fermi energy lies in an energy gap. We find that the states due to the vacancies or impurities with small hopping constants are highly localized and do not contribute to the Hall conduction. However, the impurities with high hopping constants result in new Hall plateaus with constant conduction of σ xy=±e 2/h, since high hopping constants increase the probability of an electron contributing to the conduction. © 2012 IOP Publishing Ltd

    Hall conductance in graphene with point defects

    Get PDF
    We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified. © 2013 IOP Publishing Ltd
    corecore