11,562 research outputs found

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    Normal Mode Determination of Perovskite Crystal Structures with Octahedral Rotations: Theory and Applications

    Full text link
    Nuclear site analysis methods are used to enumerate the normal modes of ABX3ABX_{3} perovskite polymorphs with octahedral rotations. We provide the modes of the fourteen subgroups of the cubic aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of the BX6BX_{6} octahedra with different sense and amplitude about high symmetry axes. We tabulate all normal modes of each tilt system and specify the contribution of each atomic species to the mode displacement pattern, elucidating the physical meaning of the symmetry unique modes. We have systematically generated 705 schematic atomic displacement patterns for the normal modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative examples how to use these tables to identify the octahedral rotations, symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing distortions of the BX6BX_{6} octahedra, and the associated Raman selection rules. We anticipate that these tables and schematics will be useful in understanding the lattice dynamics of bulk perovskites and would serve as reference point in elucidating the atomic origin of a wide range of physical properties in synthetic perovskite thin films and superlattices.Comment: 17 pages, 3 figures, 17 tables. Supporting information accessed through link specified within manuscrip

    Field Induced Magnetic Ordering and Single-ion Anisotropy in the Quasi-1D Haldane Chain Compound SrNi2V2O8: A Single Crystal investigation

    Get PDF
    Field-induced magnetic ordering in the Haldane chain compound SrNi2_{2}V2_{2}O8_{8} and effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low temperature heat-capacity studies confirm a non-magnetic spin-singlet ground state and a gap between the singlet ground state and triplet excited states. The intra-chain exchange interaction is estimated to be J∼8.9±J \sim 8.9{\pm}0.1 meV. Splitting of the dispersions into two modes with minimum energies 1.57 and 2.58 meV confirms the existence of single-ion anisotropy D(Sz)2D(S^z){^2}. The value of {\it D} is estimated to be −0.51±0.01-0.51{\pm}0.01 meV and the easy axis is found to be along the crystallographic {\it c}-axis. Field-induced magnetic ordering has been found with two critical fields [μ0Hc⊥c=12.0±\mu_0H_c^{\perp c} = 12.0{\pm}0.2 T and μ0Hc∥c=20.8±\mu_0H_c^{\parallel c} = 20.8{\pm}0.5 T at 4.2 K]. Field-induced three-dimensional magnetic ordering above the critical fields is evident from the heat-capacity, susceptibility, and high-field magnetization study. The Phase diagram in the {\it H-T} plane has been obtained from the high-field magnetization. The observed results are discussed in the light of theoretical predictions as well as earlier experimental reports on Haldane chain compounds

    Pressure-Induced Simultaneous Metal-Insulator and Structural-Phase Transitions in LiH: a Quasiparticle Study

    Full text link
    A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-electron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Zero-field spin splitting in a two-dimensional electron gas with the spin-orbit interaction revisited

    Full text link
    We consider a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction (SOI) in presence of a perpendicular magnetic field. We derive analytical expressions of the density of states (DOS) of a 2DEG with the Rashba SOI in presence of magnetic field by using the Green's function technique. The DOS allows us to obtain the analytical expressions of the magnetoconductivities for spin-up and spin-down electrons. The conductivities for spin-up and spin-down electrons oscillate with different frequencies and gives rise to the beating patterns in the amplitude of the Shubnikov de Hass (SdH) oscillations. We find a simple equation which determines the zero-field spin splitting energy if the magnetic field corresponding to any beat node is known from the experiment. Our analytical results reproduce well the experimentally observed non-periodic beating patterns, number of oscillations between two successive nodes and the measured zero-field spin splitting energy.Comment: 5 pages, 2 figure

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ0≈0.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-J⊥J_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    Effect of Gold Nanoparticles Size on Light Scattering for Thin Films Amorphous-Silicon Cells

    Get PDF
    Cataloged from PDF version of article.In this work, the effect of gold (Au) nanoparticles on the performance of a-Si:H solar cells is investigated experimentally. The solar cell stack is grown on a highly doped p-type Si wafer and consists of 20nm heavily doped p-type a-Si, 500nm undoped a-Si, 20nm heavily doped n-type a-Si and finally 80nm Indium Tin Oxide (ITO) on the top. Au nanoparticles of 10, 20, 50, 80, 100, 200 and 400nm are spin coated on top of the ITO before metallization. The plasmonic effect of the Au nanoparticles allows for additional scattering at the surface thus reducing the overall reflectivity. The larger the nanoparticle size the more scattering is obtained and the median reflectivity drops from about 23% to 18%. The results show an increase in the short-circuit current density (Jsc) and efficiency with increasing nanoparticle size. The Jsc increases from 9.34 to 10.1mA/cm2. In addition, the efficiency increases from 4.28% to 5.01%. © 2014 Elsevier Ltd

    Ga+, In+ and Tl+ Impurities in Alkali Halide Crystals: Distortion Trends

    Full text link
    A computational study of the doping of alkali halide crystals (AX: A = Na, K; X = Cl, Br) by ns2 cations (Ga+, In+ and Tl+) is presented. Active clusters of increasing size (from 33 to 177 ions) are considered in order to deal with the large scale distortions induced by the substitutional impurities. Those clusters are embedded in accurate quantum environments representing the surrounding crystalline lattice. The convergence of the distortion results with the size of the active cluster is analyced for some selected impurity systems. The most important conclusion from this study is that distortions along the (100) and (110) crystallographic directions are not independent. Once a reliable cluster model is found, distortion trends as a function of impurity, alkali cation and halide anion are identified and discussed. These trends may be useful when analycing other cation impurities in similar host lattices.Comment: LaTeX file. 7 pages and 2 pictures. Accepted for publication in J. Chem. Phy
    • …
    corecore