26 research outputs found

    Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan

    Get PDF
    IntroductionFatty acid oxidation disorders (FAODs) are rare diseases caused by defects in mitochondrial fatty acid oxidation (FAO) enzymes. While the efficacy of bezafibrate, a peroxisome proliferator-activated receptor agonist, on the in vitro FAO capacity has been reported, the in vivo efficacy remains controversial. Therefore, we conducted a clinical trial of bezafibrate in Japanese patients with FAODs.Materials and methodsThis trial was an open-label, non-randomized, and multicenter study of bezafibrate treatment in 6 patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and 2 patients with carnitine palmitoyltransferase-II (CPT-2) deficiency (median age, 8.2 years; ranging from 5.8 to 26.4 years). Bezafibrate was administered for 6 months following a 6-month observation period. The primary endpoint was the frequency of myopathic attacks, and the secondary endpoints were serum acylcarnitines (ACs, C14:1 or C16 + C18:1), creatine kinase (CK) levels, degree of muscle pain (VAS; visual analog scale) during myopathic attacks, and quality of life (QOL; evaluated using validated questionnaires).ResultsThe frequency of myopathic attacks after bezafibrate administration decreased in 3 patients, increased in 3, and did not change in 2. The CK, AC, and VAS values during attacks could be estimated in only three or four patients, but a half of the patients did not experience attacks before or after treatment. Changes in CK, AC, and VAS values varied across individuals. In contrast, three components of QOL, namely, physical functioning, role limitation due to physical problems (role physical), and social functioning, were significantly elevated. No adverse drug reactions were observed.ConclusionIn this study, the frequency of myopathic attacks and CK, AC, and VAS values during the attacks could not be evaluated due to several limitations, such as a small trial population. Our findings indicate that bezafibrate improves the QOL of patients with FAODs, but its efficacy must be examined in future investigations

    Umbilical artery tissue contains p75 neurotrophin receptor-positive pericyte-like cells that possess neurosphere formation capacity and neurogenic differentiation potential

    No full text
    Introduction: The p75 neurotrophin receptor (p75NTR) is known as an efficient marker for the prospective isolation of mesenchymal stem cells (MSCs) and neural crest-derived stem cells (NCSCs). To date, there is quite limited information concerning p75NTR-expressing cells in umbilical cord (UC), although UC is known as a rich source of MSCs. We show for the first time the localization, phenotype, and functional properties of p75NTR+ cells in UC. Methods: Human UC tissue sections were subjected to immunohistochemistry for MSC markers including p75NTR. Enzymatically isolated umbilical artery (UA) cells containing p75NTR+ cells were assessed for immunophenotype, clonogenic capacity, and differentiation potential. To identify the presence of neural crest-derived cells in the UA, P0-Cre/Floxed-EGFP reporter mouse embryos were used, and immunohistochemical analysis of UC tissue was performed. Results: Immunohistochemical analysis revealed that p75NTR+ cells were specifically localized to the subendothelial area of the UA and umbilical vein. The p75NTR+ cells co-expressed PDGFRβ, CD90, CD146, and NG2, phenotypic markers of MSCs and pericytes. Isolated UA cells possessed the potential to form neurospheres that further differentiated into neuronal and glial cell lineages. Genetic lineage tracing analysis showed that EGFP+ neural crest-derived cells were detected in the subendothelial area of UA with p75NTR immunoreactivity. Conclusions: These results show that UA tissue harbors p75NTR+ pericyte-like cells in the subendothelial area that have the capacity to form neurospheres and the potential for neurogenic differentiation. The lineage tracing data suggests the p75NTR+ cells are putatively derived from the neural crest

    Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis.

    No full text
    Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis

    Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan

    Get PDF
    Introduction: Fatty acid oxidation disorders (FAODs) are rare diseases caused by defects in mitochondrial fatty acid oxidation (FAO) enzymes. While the efficacy of bezafibrate, a peroxisome proliferator-activated receptor agonist, on the in vitro FAO capacity has been reported, the in vivo efficacy remains controversial. Therefore, we conducted a clinical trial of bezafibrate in Japanese patients with FAODs. Materials and methods: This trial was an open-label, non-randomized, and multicenter study of bezafibrate treatment in 6 patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and 2 patients with carnitine palmitoyltransferase-II (CPT-2) deficiency (median age, 8.2 years; ranging from 5.8 to 26.4 years). Bezafibrate was administered for 6 months following a 6-month observation period. The primary endpoint was the frequency of myopathic attacks, and the secondary endpoints were serum acylcarnitines (ACs, C14:1 or C16 + C18:1), creatine kinase (CK) levels, degree of muscle pain (VAS; visual analog scale) during myopathic attacks, and quality of life (QOL; evaluated using validated questionnaires). Results: The frequency of myopathic attacks after bezafibrate administration decreased in 3 patients, increased in 3, and did not change in 2. The CK, AC, and VAS values during attacks could be estimated in only three or four patients, but a half of the patients did not experience attacks before or after treatment. Changes in CK, AC, and VAS values varied across individuals. In contrast, three components of QOL, namely, physical functioning, role limitation due to physical problems (role physical), and social functioning, were significantly elevated. No adverse drug reactions were observed. Conclusion: In this study, the frequency of myopathic attacks and CK, AC, and VAS values during the attacks could not be evaluated due to several limitations, such as a small trial population. Our findings indicate that bezafibrate improves the QOL of patients with FAODs, but its efficacy must be examined in future investigations
    corecore