1,157 research outputs found

    Pax7 lineage contributions to the mammalian neural crest.

    Get PDF
    BackgroundNeural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Methodology/principal findingsHere we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.Conclusions/significanceThese results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development

    Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine.

    Get PDF
    One of the simplest models for examining the interplay between bone formation and resorption is the junction between the cranial bones. Although only roughly a quarter of patients diagnosed with craniosynostosis have been linked to known genetic disturbances, the molecular mechanisms elucidated from these studies have provided basic knowledge of bone homeostasis. This work has translated to methods and advances in bone tissue engineering. In this review, we examine the current knowledge of cranial suture biology derived from human craniosynostosis syndromes and discuss its application to regenerative medicine

    A mathematical model for mechanotransduction at the early steps of suture formation

    Get PDF
    Growth and patterning of craniofacial sutures are subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability leading to the emergence of interdigitations. We confirm the appearance of this instability both analytically and numerically. To support our model, we use histology and synchrotron x-ray microtomography and reveal the fine structure of fibres within the sutural mesenchyme and their insertion into the bone. Furthermore, using a mouse model with impaired mechanotransduction, we show that the architecture of sutures is disturbed when forces are not interpreted properly. Finally, by studying the structure of sutures in the mouse, the rat, an actinopterygian (\emph{Polypterus bichir}) and a placoderm (\emph{Compagopiscis croucheri}), we show that bone deposition patterns during dermal bone growth are conserved within jawed vertebrates. In total, these results support the role of mechanical constraints in the growth and patterning of craniofacial sutures, a process that was probably effective at the emergence of gnathostomes, and provide new directions for the understanding of normal and pathological suture fusion

    Compensatory Upregulation of Myelin Protein Zero-Like 2 Expression in Spermatogenic Cells in Cell Adhesion Molecule-1-Deficient Mice

    Get PDF
    The cell adhesion molecule-1 (Cadm1) is a member of the immunoglobulin superfamily. In the mouse testis, Cadm1 is expressed in the earlier spermatogenic cells up to early pachytene spermatocytes and also in elongated spermatids, but not in Sertoli cells. Cadm1-deficient mice have male infertility due to defective spermatogenesis, in which detachment of spermatids is prominent while spermatocytes appear intact. To elucidate the molecular mechanisms of the impaired spermatogenesis caused by Cadm1 deficiency, we performed DNA microarray analysis of global gene expression in the testis compared between Cadm1-deficient and wild-type mice. Out of the 25 genes upregulated in Cadm1-deficient mice, we took a special interest in myelin protein zero-like 2 (Mpzl2), another cell adhesion molecule of the immunoglobulin superfamily. The levels of Mpzl2 mRNA increased by 20-fold and those of Mpzl2 protein increased by 2-fold in the testis of Cadm1-deficient mice, as analyzed with quantitative PCR and western blotting, respectively. In situ hybridization and immunohistochemistry demonstrated that Mpzl2 mRNA and protein are localized in the earlier spermatogenic cells but not in elongated spermatids or Sertoli cells, in both wild-type and Cadm1-deficient mice. These results suggested that Mpzl2 can compensate for the deficiency of Cadm1 in the earlier spermatogenic cells

    Duodenum-Preserving Resection of the Head of the Pancreas: The Significance as a Diagnostic Therapy for the Lesion in the Pancreatic Head

    Get PDF
    A 75-year-old man who was diagnosed as having mucin-producing pancreatic cystic lesion ofthe main pancreatic duct by duodenoscopic examination was reported. Because of the low malignant potential of such lesions, duodenum-preserving resection of the head of the pancreas was performed, and the intra-operative histological examination showed no malig-nancy of the resected pancreatic head and no other surgical procedures, such as lymph-adenectomy nor pancreato-duodenectomy were necessary. The significance of this case report lies in that a less invasive operation should be selected at first to diagnose whether the lesion is malignant or not, and als0 that the selected operation itself must be sufficient to resect an adequate part of the pancreatic tissue involving the cystic lesion, ifnot malignant. Here, we report the process to select the procedure and the surgical technique

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Should hepatomas be treated with hepatic resection or transplantation?

    Get PDF
    BACKGROUND: The aim of this collaborative study was to compare the long term results of hepatic resection (Hx) with those of orthotopic liver transplantation (OLTx) in large numbers of cirrhotic patients with hepatocellular carcinoma (HCC) and to delineate the roles of these two surgical treatments. METHODS: The databases of the National Cancer Center Hospital in Japan and the University of Pittsburgh Medical Center in the U. S. were exchanged and 294 cirrhotic patients who underwent curative Hx and 270 cirrhotic patients who underwent curative OLTx were selected for comparison. RESULTS: The mortality rate within 30 days and that within 150 days after Hx were significantly lower than those after OLTx (P = 0.001 and P = 0.00007, respectively). Overall survival was similar between the Hx group and the OLTx group (P = 0.40). When compared in the HCC patients without macroscopic vascular invasion and lymph node metastases, the overall survival rate after OLTx was significantly higher than that after Hx (P = 0.006). However, this difference was not significant between the patients with Child-Pugh Grade A tumors in the Hx group and all patients (majority with Child-Pugh Grade C tumors) in the OLTx group (P = 0.25). Tumor free survival after OLTx was significantly higher than that after Hx (P 5 cm and those with macroscopic vascular invasion, the tumor free survival rate was similar between the Hx group and the OLTx group. CONCLUSIONS: In the face of organ shortage, HCC developing in a well compensated cirrhotic liver initially may be treated with Hx. However, the authors believe OLTx should be applied selectively to those patients with tumor recurrence and/or progressive hepatic failure

    Expression and Localization of the Cell Adhesion Molecule SgIGSF during Regeneration of the Olfactory Epithelium in Mice

    Get PDF
    Spermatogenic immunoglobulin superfamily (SgIGSF) is a cell adhesion molecule originally discovered in mouse testis. SgIGSF is expressed not only in spermatogenic cells but also in lung and liver epithelial cells and in neurons and glia of the central and peripheral nervous systems. In the present study, we examined the expression and localization of SgIGSF in mouse olfactory epithelium before and after transection of the olfactory nerves, by RT-PCR, Western blotting and immunohistochemistry. In normal olfactory mucosa, SgIGSF showed 100 kDa in molecular weight, which was identical with that in the lung but different from that in the brain. SgIGSF was expressed on the membrane of all olfactory, sustentacular and basal cells, but more abundantly in the apical portions of the olfactory epithelium where the dendrites of olfactory cells are in contact with sustentacular cells. After olfactory nerve transection, mature olfactory cells disappeared in 4 days but were regenerated around 7–15 days by proliferation and differentiation of basal cells into mature olfactory cells through the step of immature olfactory cells. During this period, both the mRNA and protein for SgIGSF showed a transient increase, with peak levels at 7 days and 11 days, respectively, after the transection. Immunohistochemistry showed that the enriched immunoreactivity for SgIGSF at 7–11 days was localized primarily to the membrane of immature olfactory cells. These results suggested that, during regeneration of the olfactory epithelium, the adhesion molecule SgIGSF plays physiological roles in differentiation, migration, and maturation of immature olfactory cells

    Acknowledgement to reviewers of journal of functional biomaterials in 2019

    Get PDF

    Mechanical properties of calvarial bones in a mouse model for craniosynostosis

    Get PDF
    The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients
    corecore