19 research outputs found
c-ABL tyrosine kinase stabilizes RAD51 chromatin association
金沢大学がん研究所がん分子細胞制御The assembly of RAD51 recombinase on DNA substrates at sites of breakage is essential for their repair by homologous recombination repair (HRR). The signaling pathway that triggers RAD51 assembly at damage sites to form subnuclear foci is unclear. Here, we provide evidence that c-ABL, a tyrosine kinase activated by DNA damage which phosphorylates RAD51 on Tyr-315, works at a previously unrecognized, proximal step to initiate RAD51 assembly. We first show that c-ABL associates with chromatin after DNA damage in a manner dependent on its kinase activity. Using RAD51 mutants that are unable to oligomerize to form a nucleoprotein filament, we separate RAD51 assembly on DNA to form foci into two steps: stable chromatin association followed by oligomerization. We show that phosphorylation on Tyr-315 by c-ABL is required for chromatin association of oligomerization-defective RAD51 mutants, but is insufficient to restore oligomerization. Our findings suggest a new model for the regulation of early steps of HRR. © 2009 Elsevier Inc. All rights reserved
Inhibitory effects of local anesthetics on the proteasome and their biological actions
Local anesthetics (LAs) inhibit endoplasmic reticulum-associated protein degradation, however the mechanisms remain elusive. Here, we show that the clinically used LAs pilsicainide and lidocaine bind directly to the 20S proteasome and inhibit its activity. Molecular dynamic calculation indicated that these LAs were bound to the β5 subunit of the 20S proteasome, and not to the other active subunits, β1 and β2. Consistently, pilsicainide inhibited only chymotrypsin-like activity, whereas it did not inhibit the caspase-like and trypsin-like activities. In addition, we confirmed that the aromatic ring of these LAs was critical for inhibiting the proteasome. These LAs stabilized p53 and suppressed proliferation of p53-positive but not of p53-negative cancer cells
Differential regulation of diacylglycerol kinase isoform in human failing hearts
Evidence from several studies indicates the importance of Gαq protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG), and protein kinase C, in the development of heart failure. DAG kinase (DGK) acts as an endogenous regulator of GPCR signaling pathway by catalyzing and regulating DAG. Expressions of DGK isoforms α, ε, and ζ in rodent hearts have been detected; however, the expression and alteration of DGK isoforms in a failing human heart has not yet been examined. In this study, we detected mRNA expressions of DGK isoforms γ, η, ε, and ζ in failing human heart samples obtained from patients undergoing cardiovascular surgery with cardiopulmonary bypass. Furthermore, we investigated modulation of DGK isoform expression in these hearts. We found that expressions of DGKη and DGKζ were increased and decreased, respectively, whereas those of DGKγ and DGKε remained unchanged. This is the first report that describes the differential regulation of DGK isoforms in normal and failing human hearts
Filament formation and robust strand exchange activities of the rice DMC1A and DMC1B proteins
The DMC1 protein, a meiosis-specific DNA recombinase, catalyzes strand exchange between homologous chromosomes. In rice, two Dmc1 genes, Dmc1A and Dmc1B, have been reported. Although the Oryza sativa DMC1A protein has been partially characterized, however the biochemical properties of the DMC1B protein have not been defined. In the present study, we expressed the Oryza sativa DMC1A and DMC1B proteins in bacteria and purified them. The purified DMC1A and DMC1B proteins formed helical filaments along single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and promoted robust strand exchange between ssDNA and dsDNA over five thousand base pairs in the presence of RPA, as a co-factor. The DMC1A and DMC1B proteins also promoted strand exchange in the absence of RPA with long DNA substrates containing several thousand base pairs. In contrast, the human DMC1 protein strictly required RPA to promote strand exchange with these long DNA substrates. The strand-exchange activity of the Oryza sativa DMC1A protein was much higher than that of the DMC1B protein. Consistently, the DNA-binding activity of the DMC1A protein was higher than that of the DMC1B protein. These biochemical differences between the DMC1A and DMC1B proteins may provide important insight into their functional differences during meiosis in rice
Prevention of type 2 diabetes in a primary healthcare setting: Three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance
<p>Abstract</p> <p>Background</p> <p>A randomized control trial was performed to test whether a lifestyle intervention program, carried out in a primary healthcare setting using existing resources, can reduce the incidence of type 2 diabetes in Japanese with impaired glucose tolerance (IGT). The results of 3 years' intervention are summarized.</p> <p>Methods</p> <p>Through health checkups in communities and workplaces, 304 middle-aged IGT subjects with a mean body mass index (BMI) of 24.5 kg/m<sup>2 </sup>were recruited and randomized to the intervention group or control group. The lifestyle intervention was carried out for 3 years by public health nurses using the curriculum and educational materials provided by the study group.</p> <p>Results</p> <p>After 1 year, the intervention had significantly improved body weight (-1.5 ± 0.7 vs. -0.7 ± 2.5 kg in the control; p = 0.023) and daily non-exercise leisure time energy expenditure (25 ± 113 vs. -3 ± 98 kcal; p = 0.045). Insulin sensitivity assessed by the Matsuda index was improved by the intervention during the 3 years. The 3-year cumulative incidence tended to be lower in the intervention group (14.8% vs.8.2%, log-rank test: p = 0.097). In a sub-analysis for the subjects with a BMI > 22.5 kg/m<sup>2</sup>, a significant reduction in the cumulative incidence was found (p = 0.027).</p> <p>Conclusions</p> <p>The present lifestyle intervention program using existing healthcare resources is beneficial in preventing diabetes in Japanese with IGT. This has important implications for primary healthcare-based diabetes prevention.</p> <p>Trial registration number</p> <p><b>UMIN000003136</b></p