39 research outputs found
An Optically Dark GRB Observed by HETE-2: GRB 051022
GRB 051022 was detected at 13:07:58 on 22 October 2005 by HETE-2. The
location of GRB 051022 was determined immediately by the flight localization
system. This burst contains multiple pulses and has a rather long duration of
about 190 seconds. The detections of candidate X-ray and radio afterglows were
reported, whereas no optical afterglow was found. The optical spectroscopic
observations of the host galaxy revealed the redshift z = 0.8. Using the data
derived by HETE-2 observation of the prompt emission, we found the absorption
N_H = 8.8 -2.9/+3.1 x 10^22 cm^-2 and the visual extinction A_V = 49 -16/+17
mag in the host galaxy. If this is the case, no detection of any optical
transient would be quite reasonable. The absorption derived by the Swift XRT
observations of the afterglow is fully consistent with those obtained from the
early HETE-2 observation of the prompt emission. Our analysis implies an
interpretation that the absorbing medium could be outside external shock at R ~
10^16 cm, which may be a dusty molecular cloud.Comment: 6 pages, 2 figures, accepted for publication in PASJ lette
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
HETE-2 Observations of the X-Ray Flash XRF 040916
A long X-ray flash was detected and localized by the instruments aboard the
High Energy Transient Explorer II (HETE-2) at 00:03:30 UT on 2004 September 16.
The position was reported to the GRB Coordinates Network (GCN) approximately 2
hours after the burst. This burst consists of two peaks separated by 200 s,
with durations of 110 s and 60 s. We have analyzed the energy spectra of the
1st and 2nd peaks observed with the Wide Field X-Ray Monitor (WXM) and the
French Gamma Telescope (FREGATE). We discuss the origin of the 2nd peak in
terms of flux variabilities and timescales. We find that it is most likely part
of the prompt emission, and is explained by the long-acting engine model. This
feature is similar to some bright X-ray flares detected in the early afterglow
phase of bursts observed by the Swift satellite.Comment: 9 pages, 4 figures, Accepted for publication in PAS
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
Hitomi (ASTRO-H) X-ray Astronomy Satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month