42 research outputs found

    HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32).

    Get PDF
    International audienceThe t(5;14)(q35;q32) chromosomal translocation is specifically observed in up to 20% of childhood T-cell acute lymphoblastic leukemia (T-ALL). It affects the BCL11B/CTIP2 locus on chromosome 14 and the RANBP17-TLX3/HOX11L2 region on chromosome 5. It leads to ectopic activation of TLX3/HOX11L2. To investigate the reasons of the association between t(5;14) and T-ALL, we isolated the translocation breakpoints in 8 t(5;14) patients. Sequence analyses did not involve recombinase activity in the genesis of the translocation. We used DNAse1 hypersensitive experiments to locate transcriptional regulatory elements downstream of BCL11B. By transient transfection experiments, 2 of the 6 regions demonstrated cis-activation properties in T cells and were also effective on the TLX3 promoter. Our data indicate that the basis of the specific association between t(5;14) and T-ALL lies on the juxtaposition of TLX3 to long-range cis-activating regions active during T-cell differentiation

    The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.

    Get PDF
    Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies

    Epstein-Barr Virus-Induced Gene 3 (EBI3): A Novel Diagnosis Marker in Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma

    Get PDF
    The distinction between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), two types of mature aggressive B-cell lymphomas that require distinct treatments, can be difficult because of forms showing features intermediate between DLBCL and BL (here called BL/DLBCL). They can be discriminated by the presence of c-myc translocations characteristic of BL. However, these are not exclusive of BL and when present in DLBCL are associated with lower survival. In this study, we show that Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed among BL and DLBCL. Analysis of gene expression data from 502 cases of aggressive mature B-cell lymphomas available on Gene Expression Omnibus and immunohistochemical analysis of 184 cases of BL, BL/DLBCL or DLBCL, showed that EBI3 was not expressed in EBV-positive or -negative BL cases, whereas it was expressed by over 30% of tumoral cells in nearly 80% of DLBCL cases, independently of their subtypes. In addition, we show that c-myc overexpression represses EBI3 expression, and that DLBCL or BL/DLBCL cases with c-myc translocations have lower expression of EBI3. Thus, EBI3 immunohistochemistry could be useful to discriminate BL from DLBCL, and to identify cases of BL/DLBCL or DLBCL with potential c-myc translocations

    Functional analysis of the NUP98-CCDC28A fusion protein

    No full text
    International audienceThe nucleoporin gene NUP98 is rearranged in more than 27 chromosomal abnormalities observed in childhood and adult, de novo and therapyrelated acute leukemias from myeloid and T-lymphoid origins, resulting in the creation of fusion genes and the expression of chimeric proteins. We report here the functional analysis of the NUP98-coiled-coil domain-containing protein 28A (NUP98- CCDC28A) fusion protein, expressed as the consequence of a recurrent t(6;11)(q24.1;p15.5) translocation. Design and Methods. To gain insight into the function of the native CCDC28A gene, we collected information of any differential expression for CCDC28A among normal hematological cell types and within subgroups of acute leukemia. To assess the in vivo effects of the NUP98-CCDC28A fusion, NUP98-CCDC28A or full length CCDC28A were retrovirally transduced into primary murine bone marrow cells and transduced cells were next transplanted into sub-lethally irradiated recipient mice. Results. Our in silico analyses supported a contribution of CCDC28A to discrete stages of murine hematopoietic development. They also suggested enrichment for CCDC28A selectively in the FAB-M6 class of human acute leukemia. Primary murine hematopoietic progenitor cells transduced with NUP98-CCDC28A generated a fully penetrant and transplantable myeloproliferative neoplasm-like myeloid leukemia and induced the selective expansion of the granulocyte/macrophage progenitors in the bone marrow of transplanted recipients, showing that NUP98-CCDC28A promotes the proliferative capacity and self-renewal potential of myeloid progenitors. In addition, the transformation mediated by NUP98-CCDC28A was not associated with a deregulation of the Hoxa-Meis1 pathway, a feature shared by a diverse set of NUP98 fusions

    An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a group for research in adult acute lymphoblastic leukemia study

    No full text
    International audienceUnlabelled - Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently suboptimal for therapeutic rescue of HOXA-positive chemoresistant adult early thymic precursor acute lymphoblastic leukemia. Trial registration - The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively
    corecore