9 research outputs found

    The large form of human 2′,5′-Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus

    Get PDF
    AbstractChikungunya virus (CHIKV) becomes one of the most important mosquito-borne alphavirus in the medical field. CHIKV is highly sensitive to antiviral activity of Type-I interferons (IFN-α/β). Here, we investigated the role of IFN-induced 2′,5′-Oligoadenylate Synthetase (OAS) family in innate immunity to CHIKV. We established inducible human epithelial HeLa cell lines expressing either the large form of human OAS, OAS3, or the genetic variant OAS3-R844X which is predicted to lack about 20% of the OAS3 protein from the carboxy terminus. HeLa cells respond to ectopic OAS3 expression by efficiently inhibiting CHIKV growth. The characteristic of the antiviral effect was a blockade in early stages of virus replication. Thus, OAS3 pathway may represent a novel antialphaviral mechanism by which IFN-α/β controls CHIKV growth. HeLa cells expressing the truncated form of OAS3 were less resistant to CHIKV infection, raising the question on the involvement of OAS3 genetic polymorphism in human susceptibility to alphavirus infection

    Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal

    Get PDF
    Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved

    A Modified mRNA Vaccine Targeting Immunodominant NS Epitopes Protects Against Dengue Virus Infection in HLA Class I Transgenic Mice

    No full text
    International audienceDengue virus (DENV) induces strong T and B cell responses upon infection. Hence, it is difficult to determine the contribution of cell-mediated immunity alone in the long lasting protection against DENV infection and disease. Numerous CD4+ and CD8+ T cell epitopes have been identified, mainly in the non-structural proteins of DENV. Taking into account the immunogenicity and peptide sequence conservation among the different DENV serotypes, a minimal DENV antigen, called DENV1-NS, has been designed. This antigen is enriched in conserved and highly antigenic epitopes located in the NS3, NS4B, and NS5 regions of DENV1. To evaluate the ability of the DENV1-NS poly-epitope to express the antigenic peptides in the context of different HLA class I molecules, we established its in vivo immunogenicity by measuring, after DNA immunization and electroporation, the activation of DENV-specific CD8 T cells in transgenic mice expressing the human HLA-A*0201, -A*2402, -B*0702, and -B*3502 class I alleles. We then engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding DENV1-NS and tested immunogenicity and protection in these human HLA class I transgenic mice, after transient blockade of the interferon (IFN) type I receptor. Significant protection was observed, after two injections of the mRNA vaccine. Collectively, these data strongly support the development of T cell-based vaccines targeting immunodominant T cell epitopes that generate potent virus-specific T cell responses conferring immunity against DENV infection

    Increased adaptive immune responses and proper feedback regulation protect against clinical dengue

    Get PDF
    International audienceClinical symptoms of dengue virus (DENV) infection, the most prevalent arthropod-borne viral disease, range from classical mild dengue fever to severe, life-threatening dengue shock syndrome. However, most DENV infections cause few or no symptoms. Asymptomatic DENV-infected patients provide a unique opportunity to decipher the host immune responses leading to virus elimination without negative impact on an individual's health. We used an integrated approach of transcriptional profiling and immunological analysis to compare a Cambodian population of strictly asymptomatic viremic individuals with clinical dengue patients. Whereas inflammatory pathways and innate immune response pathways were similar between asymptomatic individuals and clinical dengue patients, expression of proteins related to antigen presentation and subsequent T cell and B cell activation pathways was differentially regulated, independent of viral load and previous DENV infection history. Feedback mechanisms controlled the immune response in asymptomatic viremic individuals, as demonstrated by increased activation of T cell apoptosis-related pathways and FcγRIIB (Fcγ receptor IIB) signaling associated with decreased anti-DENV-specific antibody concentrations. Together, our data illustrate that symptom-free DENV infection in children is associated with increased activation of the adaptive immune compartment and proper control mechanisms, leading to elimination of viral infection without excessive immune activation, with implications for novel vaccine development strategies

    A variant in the CD209 promoter is associated with severity of dengue disease.

    No full text
    Dengue fever and dengue hemorrhagic fever are mosquito-borne viral diseases. Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN1, encoded by CD209), an attachment receptor of dengue virus, is essential for productive infection of dendritic cells. Here, we report strong association between a promoter variant of CD209, DCSIGN1-336, and risk of dengue fever compared with dengue hemorrhagic fever or population controls. The G allele of the variant DCSIGN1-336 was associated with strong protection against dengue fever in three independent cohorts from Thailand, with a carrier frequency of 4.7% in individuals with dengue fever compared with 22.4% in individuals with dengue hemorrhagic fever (odds ratio for risk of dengue hemorrhagic fever versus dengue fever: 5.84, P = 1.4 x 10(-7)) and 19.5% in controls (odds ratio for protection: 4.90, P = 2 x 10(-6)). This variant affects an Sp1-like binding site and transcriptional activity in vitro. These results indicate that CD209 has a crucial role in dengue pathogenesis, which discriminates between severe dengue fever and dengue hemorrhagic fever. This may have consequences for therapeutic and preventive strategies
    corecore