18 research outputs found

    8-Hydroxy-2-Deoxyguanosine Levels and Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Significance: 8-Hydroxy-2-deoxyguanosine (8-OHdG) is generated after the repair of ROS-mediated DNA damages and, thus, is one of the most widely recognized biomarkers of oxidative damage of DNA because guanosine is the most oxidized among the DNA nucleobases. In several pathological conditions, high urinary levels of oxidized DNA-derived metabolites have been reported (e.g., cancer, atherosclerosis, hypertension, and diabetes). Recent Advances: Even if published studies have shown that DNA damage is significantly associated with the development of atherosclerosis, the exact role of this damage in the onset and progression of this pathology is not fully understood, and the association of oxidative damage to DNA with cardiovascular disease (CVD) still needs to be more extensively investigated. We performed a meta-analysis of the literature to investigate the association among 8-OHdG levels and CVD. Critical Issues: Fourteen studies (810 CVD patients and 1106 controls) were included in the analysis. We found that CVD patients showed higher 8-OHdG levels than controls (SMD: 1.04, 95%CI: 0.61, 1.47, p < 0.001, I2 = 94%, p < 0.001). The difference was confirmed both in studies in which 8-OHdG levels were assessed in urine (MD: 4.43, 95%CI: 1.71, 7.15, p = 0.001) and in blood samples (MD: 1.42, 95%CI: 0.64, 2.21, p = 0.0004). Meta-regression models showed that age, hypertension, and male gender significantly impacted on the difference in 8-OHdG levels among CVD patients and controls. Future Directions: 8-OHdG levels are higher in patients with CVD than in controls. However, larger prospective studies are needed to test 8-OHdG as a predictor of CVD. Antioxid. Redox Signal. 24, 548-555

    Untargeted metabolomics to go beyond the canonical effect of acetylsalicylic acid

    Get PDF
    15openInternationalItalian coauthor/editorGiven to its ability to irreversibly acetylate the platelet cyclooxygenase-1 enzyme, acetylsalicylic acid (ASA) is successfully employed for the prevention of cardiovascular disease. Recently, an antitumoral effect of ASA in colorectal cancer has been increasingly documented. However, the molecular and metabolic mechanisms by which ASA exerts such effect is largely unknown. Using a new, untargeted liquid chromatography–mass spectrometry approach, we have analyzed urine samples from seven healthy participants that each ingested 100 mg of ASA once daily for 1 week. Of the 2007 features detected, 25 metabolites differing after ASA ingestion (nominal p 1) were identified, and pathway analysis revealed low levels of glutamine and of metabolites involved in histidine and purine metabolisms. Likewise, consistent with an altered fatty acid β-oxidation process, a decrease in several short- and medium-chain acyl-carnitines was observed. An abnormal β-oxidation and a lower than normal glutamine availability suggests reduced synthesis of acetyl-Co-A, as they are events linked to one another and experimentally related to ASA antiproliferative effects. While giving an example of how untargeted metabolomics allows us to explore new clinical applications of drugs, the present data provide a direction to be pursued to test the therapeutic effects of ASA—e.g., the antitumoral effect—beyond cardiovascular protectionopenDi Minno, Alessandro; Porro, Benedetta; Turnu, Linda; Manega, Chiara Maria; Eligini, Sonia; Barbieri, Simone; Chiesa, Mattia; Poggio, Paolo; Squellerio, Isabella; Anesi, Andrea; Fiorelli, Susanna; Caruso, Donatella; Veglia, Fabrizio; Cavalca, Viviana; Tremoli, ElenaDi Minno, A.; Porro, B.; Turnu, L.; Manega, C.M.; Eligini, S.; Barbieri, S.; Chiesa, M.; Poggio, P.; Squellerio, I.; Anesi, A.; Fiorelli, S.; Caruso, D.; Veglia, F.; Cavalca, V.; Tremoli, E

    Nitric Oxide Synthetic Pathway in Patients with Microvascular Angina and Its Relations with Oxidative Stress

    Get PDF
    A decreased nitric oxide (NO) bioavailability and an increased oxidative stress play a pivotal role in different cardiovascular pathologies. As red blood cells (RBCs) participate in NO formation in the bloodstream, the aim of this study was to outline the metabolic profile of L-arginine (Arg)/NO pathway and of oxidative stress status in RBCs and in plasma of patients with microvascular angina (MVA), investigating similarities and differences with respect to coronary artery disease (CAD) patients or healthy controls (Ctrl). Analytes involved in Arg/NO pathway and the ratio of oxidized and reduced forms of glutathione were measured by LC-MS/MS. The arginase and the NO synthase (NOS) expression were evaluated by immunofluorescence staining. RBCs from MVA patients show increased levels of NO synthesis inhibitors, parallel to that found in plasma, and a reduction of NO synthase expression. When summary scores were computed, both patient groups were associated with a positive oxidative score and a negative NO score, with the CAD group located in a more extreme position with respect to Ctrl. This finding points out to an impairment of the capacity of RBCs to produce NO in a pathological condition characterized mostly by alterations at the microvascular bed with no significant coronary stenosis

    In vivo prostacyclin biosynthesis and effects of different aspirin regimens in patients with essential thrombocythemia

    No full text
    Essential Thrombocythemia (ET) is characterized by enhanced platelet generation and thrombosis. Once daily (od) aspirin incompletely inhibits platelet thromboxane (TX)A2 production in ET. A twice daily (bid) dosing is necessary to fully inhibit TXA2. Whether this dosing regimen affects in vivo prostacyclin (PGI2) biosynthesis is unknown. PGI2 biosynthesis was characterized in 50 ET patients on enteric-coated (EC) aspirin 100 mg od, by measuring its urinary metabolite, 2,3-dinor-6-keto-PGF1\uf061 (PGI-M). Moreover, in a crossover study 22 patients poorly responsive to standard aspirin based on serum TXB2 levels ( 654 ng/ml) were randomized to different 7-day aspirin regimens: EC aspirin 100 mg od, 100 mg bid, 200 mg od, or plain aspirin 100 mg od. PGI-M measured 24 hrs after the last aspirin intake (EC, 100 mg od) was similar in patients and healthy subjects both on (n=10) and off (n=30) aspirin. PGI-M was unrelated to in vivo TXA2 biosynthesis, and not affected by EC aspirin 100 mg bid or 200 mg od as compared to EC 100 mg od. PGI2 biosynthesis in aspirin-treated ET patients appears unrelated to TXA2 biosynthesis, and not affected by an improved aspirin regimen, demonstrating its vascular safety for future trials

    Arginine, ADMA and SDMA plasma levels.

    No full text
    <p>Arginine (panel A), asymmetric dimethylarginine (ADMA; panel B), and symmetric dimethylarginine (SDMA; panel C) plasma levels (mean±SD values) in healthy subjects (n = 20), in controls with chronic kidney disease (CKD; n = 10), and in NSTEMI patients without (n = 71) and with (n = 33) CKD.</p

    Baseline characteristics of the study patients.

    No full text
    *<p>By Fisher exact test.</p>§<p>by Wilcoxon Rank Sum Test.</p><p>ACE = angiotensin-converting enzyme; ARB = angiotensin II receptor blocker; CABG = coronary artery bypass graft surgery; CKD = chronic kidney disease; CRP = C-reactive protein; eGFR = estimated glomerular filtration rate; NA = not applicable; PCI = percutaneous coronary intervention.</p

    Cox regression analysis for the primary end point of the study (composite outcome of cardiac death and myocardial infarction).

    No full text
    <p>Hazard ratios (HR) in models 1–4 are adjusted for age, hemoglobin and left ventricular ejection fraction; HRs in models 5–7 are also mutually adjusted.</p><p>HRs for CKD are vs. no-CKD; for all other variables, HRs are for values above vs. below median.</p><p>ADMA = asymmetric dimethylarginine; CKD = chronic kidney disease; CI = confidence intervals; SDMA = symmetric dimethylarginine.</p

    Kaplan-Meier survival analyses during follow-up.

    No full text
    <p>Composite outcomes of cardiac death and myocardial infarction according to concentrations of plasma arginine (panel A), asymmetric dimethylarginine (ADMA; panel B), and symmetric dimethylarginine (SDMA; panel C), divided by median levels. P values by log-rank test are shown.</p

    Relationships between NO synthesis inhibitors and renal function.

    No full text
    <p>Relationship between asymmetric (ADMA; upper panel) and symmetric (SDMA; lower panel) dimethylarginine plasma levels and estimated glomerular filtration rate (eGFR) in the study population.</p
    corecore