33 research outputs found

    How personal resources predict work engagement and self-rated performance among construction workers: A social cognitive perspective

    Get PDF
    Traditionally, research focussing on psychosocial factors in the construction industry has focused mainly on the negative aspects of health and on results such as occupational accidents. This study, however, focuses on the specific relationships among the different positive psychosocial factors shared by construction workers that could be responsible for occupational well-being and outcomes such as performance. The main objective of this study was to test whether personal resources predict self-rated job performance through job resources and work engagement. Following the predictions of Bandura's Social Cognitive Theory and the motivational process of the Job Demands-Resources Model, we expect that the relationship between personal resources and performance will be fully mediated by job resources and work engagement. The sample consists of 228 construction workers. Structural equation modelling supports the research model. Personal resources (i.e. self-efficacy, mental and emotional competences) play a predicting role in the perception of job resources (i.e. job control and supervisor social support), which in turn leads to work engagement and self-rated performance. This study emphasises the crucial role that personal resources play in determining how people perceive job resources by determining the levels of work engagement and, hence, their self-rated job performance. Theoretical and practical implications are discussed

    Cosechando la lectura y la escritura a partir de materiales de desecho en la i.e.d. armando estrada florez zona bananera

    Get PDF
    Tomando la basura o residuos (Cuadernos viejos), como materiales que surgen de las actividades humanas y animales y que se desechan, en la institución quienes presentaban un hábito de reutilización muy bajo lo que generó una necesidad y surgió una inquietud, la cual nos llevó a investigar y plantear soluciones, que generaran en los alumnos de cierta manera un hábito de reutilización, reciclaje e higiene ambiental y que de esta forma se construirá una comunidad escolar con grandes valores y respetos hacia el medio ambiente, ecológicos, ambientales y sobre todo culturales.Taking the garbage or waste (old notebooks), such as materials that arise from human and animal activities and that are discarded, in the institution who presented a very low reuse habit, which generated a need and a concern arose, which led us to investigate and propose solutions, which generate in the students in a certain way a habit of reuse, recycling and environmental hygiene and that in this way a school community will be built with great values ​​and respect for the environment, ecological, environmental and especially cultural

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    Oxytocin Signaling in Mouse Taste Buds

    Get PDF
    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR.Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene.We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Functional cell types in taste buds have distinct longevities.

    Get PDF
    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells

    EdU-labeled nuclei in non-taste lingual epithelium surrounding taste buds turn over rapidly. A,

    No full text
    <p>wide-field fluorescence micrograph of circumvallate papilla, 1 day after a single pulse of EdU. Many EdU-labeled nuclei (red) are visible along the base of the epithelium. Taste buds are immunostained (grey) for KCNQ1, a marker for all taste cells. The location of EdU+ nuclei, whether inside or outside of taste buds cannot be judged from a wide-field micrograph such as this. <b>B–D</b>, Higher power single plane confocal micrographs of circumvallate taste buds, 1, 3, or 5 days after injecting EdU. The large majority of EdU-labeled epithelial cells are outside of taste buds. Basal and apical limits of the epithelium are indicated with white solid and dotted lines respectively to highlight the rapid migration of newly-born non-taste cells from the stratum basale to the superficial epithelial strata. <b>E</b>, Cartoon depicting progression of EdU-labeled non-taste nuclei vertically through the epithelium and their simulataneous change of shape from ovoid at the base to horizontally flattened at the apical surface. <b>F</b>, Plot of EdU labeled non-taste nuclei per unit area <i>versus</i> days post-injection. Data were obtained from micrographs of circumvallate trench such as those in <b>B–D</b>. Each symbol represents data from a separate mouse. The solid line is a best-fit 1-phase exponential decay curve that yields a half-life of 2 days (R<sup>2</sup> = 0.98) for non-taste epithelial cells surrounding taste buds. The dashed line is a smoothed line through the average values at each time point in the time course. Scale bars, 20 µm.</p

    Type III cells become EdU labeled only after 3 days and they persist beyond 40 days.

    No full text
    <p><b>A, B, C,</b> a representative taste bud from a mouse 10 days after i.p. injection, stained for EdU (red), KCNQ1 (grey) and 5HT (green). <b>D,</b> Aggregate data on the incidence of EdU+5HT+ cells in circumvallate taste buds from 35 mice. The solid line is a non-linear decay curve that yields a half-life of 22 days (R<sup>2</sup> = 0.54) for Type III cells. The dashed line is a smoothed curve through the mean values at each time point. Scale bar, 20 µm.</p

    EdU-labeled nuclei are present in Type II cells 2 days post-injection and are mostly eliminated by 25 days.

    No full text
    <p><b>A,</b> a representative taste bud from a mouse analyzed 7 days post-injection, viewed for EdU and KCNQ1 immunofluorescence as above. One EdU-labeled nucleus (arrowhead) is completely embedded in the KCNQ1-stained taste bud. <b>B,C,</b> the same nucleus (arrowhead) is seen to be contained in a PLCβ2+ cell. <b>D,</b> Aggregate data from 35 mice for EdU+ nuclei located in PLCβ2+ cells. As in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053399#pone-0053399-g002" target="_blank">Figures 2</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053399#pone-0053399-g003" target="_blank">3</a>, each symbol represents data from one mouse. The solid line is a 1-phase exponential decay curve. The average half-life of EdU+ PLCβ2+ cells is calculated to be 8 days (R<sup>2</sup> = 0.84). The dashed line is a smoothed line through averages at each time point. Scale bar, 20 µm.</p
    corecore