232 research outputs found

    Restrictive antibiotic stewardship associated with reduced hospital mortality in gram-negative infection

    Get PDF
    Introduction: Antimicrobial stewardship has an important role in the control of Clostridium difficile infection (CDI) and antibiotic resistance. An important component of UK stewardship interventions is the restriction of broad-spectrum beta-lactam antibiotics and promotion of agents associated with a lower risk of CDI such as gentamicin. Whilst the introduction of restrictive antibiotic guidance has been associated with improvements in CDI and antimicrobial resistance evidence of the effect on outcome following severe infection is lacking. Methods: In 2008, Glasgow hospitals introduced a restrictive antibiotic guideline. A retrospective before/after study assessed outcome following gram-negative bacteraemia in the 2-year period around implementation. Results: Introduction of restrictive antibiotic guidelines was associated with a reduction in utilisation of ceftriaxone and co-amoxiclav and an increase in amoxicillin and gentamicin. 1593 episodes of bacteraemia were included in the study. The mortality over 1 year following gram-negative bacteraemia was lower in the period following guideline implementation (RR 0.852, P = 0.045). There was no evidence of a difference in secondary outcomes including ITU admission, length of stay, readmission, recurrence of bacteraemia and need for renal replacement therapy. There was a fall in CDI (RR 0.571, P = 0.014) and a reduction in bacterial resistance to ceftriaxone and co-amoxiclav but no evidence of an increase in gentamicin resistance after guideline implementation. Conclusion: Restrictive antibiotic guidelines were associated with a reduction in CDI and bacterial resistance but no evidence of adverse outcomes following gram-negative bacteraemia. There was a small reduction in one year mortality

    Changes in glacier surface cover on Baltoro glacier, Karakoram, north Pakistan, 2001–2012

    Get PDF
    The presence of supraglacial debris on glaciers in the Himalaya-Karakoram affects the ablation rate of these glaciers and their response to climatic change. To understand how supraglacial debris distribution and associated surface features vary spatially and temporally, geomorphological mapping was undertaken on Baltoro Glacier, Karakoram, for three time-separated images between 2001–2012. Debris is supplied to the glacier system through frequent but small landslides at the glacier margin that form lateral and medial moraines and less frequent but higher volume rockfall events which are more lobate and often discontinuous in form. Debris on the glacier surface is identified as a series of distinct lithological units which merge downglacier of the convergence area between the Godwin-Austen and Baltoro South tributary glaciers. Debris distribution varies as a result of complex interaction between tributary glaciers and the main glacier tongue, complicated further by surge events on some tributary glaciers. Glacier flow dynamics mainly controls the evolution of a supraglacial debris layer. Identifying such spatial variability in debris rock type and temporal variability in debris distribution has implications for glacier ablation rate, affecting glacier surface energy balance. Accordingly, spatial and temporal variation in supraglacial debris should be considered when determining mass balance for these glaciers through time

    Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Get PDF
    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change

    Reflection impulsivity in binge drinking: behavioural and volumetric correlates.

    Get PDF
    The degree to which an individual accumulates evidence prior to making a decision, also known as reflection impulsivity, can be affected in psychiatric disorders. Here, we study decisional impulsivity in binge drinkers, a group at elevated risk for developing alcohol use disorders, comparing two tasks assessing reflection impulsivity and a delay discounting task, hypothesizing impairments in both subtypes of impulsivity. We also assess volumetric correlates of reflection impulsivity focusing on regions previously implicated in functional magnetic resonance imaging studies. Sixty binge drinkers and healthy volunteers were tested using two different information-gathering paradigms: the beads task and the Information Sampling Task (IST). The beads task was analysed using a behavioural approach and a Bayesian model of decision making. Delay discounting was assessed using the Monetary Choice Questionnaire. Regression analyses of primary outcomes were conducted with voxel-based morphometry analyses. Binge drinkers sought less evidence prior to decision in the beads task compared with healthy volunteers in both the behavioural and computational modelling analysis. There were no group differences in the IST or delay discounting task. Greater impulsivity as indexed by lower evidence accumulation in the beads task was associated with smaller dorsolateral prefrontal cortex and inferior parietal volumes. In contrast, greater impulsivity as indexed by lower evidence accumulation in the IST was associated with greater dorsal cingulate and precuneus volumes. Binge drinking is characterized by impaired reflection impulsivity suggesting a deficit in deciding on the basis of future outcomes that are more difficult to represent. These findings emphasize the role of possible therapeutic interventions targeting decision-making deficits.The study was supported by theWellcome Trust grant to VV (093705/10/Z) and to NA Harrison. PB is supported by the Portuguese Foundation for Science and Technology (individual fellowship to PB: SFRH/BD/33889/ 2009). YW is supported by the Fyssen Fondation. MM is supported by the Welcome Trust and the Biomedical Research Centre.Wewould also like to thank theWolfson Brain Imaging Center staff for their expertise with collecting the imaging data and all the participants for their involvement in this study. The Behavioural and Clinical Neuroscience Institute is supported by the Wellcome Trust and Medical Research Council.This is the final published version. It first appeared from Wiley via http://dx.doi.org/10.1111/adb.1222

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe

    Multiannual observations and modelling of seasonal thermal profiles through supraglacial debris in the Central Himalaya

    Get PDF
    Many glaciers in the Central Himalaya are covered with rock debris that modifies the transfer of heat from the atmosphere to the underlying ice. These debris-covered glaciers are experiencing rapid mass loss at rates that have accelerated during the last two decades. Quantifying recent and future glacier mass change requires understanding the relationship between debris thickness and ablation particularly through the summer monsoon season. We present air, near-surface and debris temperatures measured during three monsoon seasons at five sites on Khumbu Glacier in Nepal, and compare these results to similar measurements from two other debris-covered glaciers in this region. Seasonal debris temperature profiles are approximately linear and consistent between sites for thick (>?0.5?m) and thin (<?0.5?m) debris across thicknesses ranging from 0.26 to 2.0?m. The similarities between these multiannual data imply that they are representative of supraglacial debris layers in the monsoon-influenced Himalaya more generally. We compare three methods to calculate sub-debris ablation, including using our temperature measurements with a thermal diffusion model that incorporates a simplified treatment of debris moisture. Estimated ablation between 3 June and 11 October at around 5000?m above sea level ranged from 0.10?m water equivalent beneath 1.5?m of debris to 0.47?m water equivalent beneath 0.3?m debris. However, these values are small when compared to remotely observed rates of surface lowering, suggesting that mass loss from these debris-covered glaciers is greatly enhanced by supraglacial and englacial processes that locally amplify ablationauthorsversionPeer reviewe
    corecore