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Abstract 

Many glaciers in the Central Himalaya are covered with rock debris that modifies the transfer of heat 

from the atmosphere to the underlying ice. These debris-covered glaciers are experiencing rapid mass 

loss at rates that have accelerated during the last two decades. Quantifying recent and future glacier 

mass change requires understanding the relationship between debris thickness and ablation particularly 25 

through the summer monsoon season. We present air, near-surface and debris temperatures measured 

during three monsoon seasons at five sites on Khumbu Glacier in Nepal, and compare these results to 

similar measurements from two other debris-covered glaciers in this region. Seasonal debris 

temperature profiles are approximately linear and consistent between sites for thick (>0.5 m) and thin 

(<0.5 m) debris across thicknesses ranging from 0.26 to 2.0 m. The similarities between these 30 

multiannual data imply that they are representative of supraglacial debris layers in the monsoon-

influenced Himalaya more generally. We compare three methods to calculate sub-debris ablation, 

including using our temperature measurements with a thermal diffusion model that incorporates a 

simplified treatment of debris moisture. Estimated ablation between 3 June and 11 October at around 

5000 m above sea level ranged from 0.10 m water equivalent beneath 1.5 m of debris to 0.47 m water 35 
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equivalent beneath 0.3 m debris. However, these values are small when compared to remotely observed 

rates of surface lowering, suggesting that mass loss from these debris-covered glaciers is greatly 

enhanced by supraglacial and englacial processes that locally amplify ablation.  

 

1. Introduction 40 

Climate change is having a dramatic and spatially-variable impact on Himalayan glaciers (Yao et al., 

2012; Brun et al. 2017) with consequences for regional hydrological budgets (Immerzeel et al., 2010) 

and glacial hazard potential (Benn et al., 2012; Westoby et al., 2014). Although predictions have been 

made for 21st Century atmospheric warming in central Asia, the likely response of glaciers to climate 

change is difficult to quantify precisely (e.g. Bolch et al., 2012; Kraaijenbrink et al., 2017) due to the 45 

strong feedbacks between high relief topography, orographic weather systems, glacier dynamics and 

extensive supraglacial debris (e.g. Bookhagen and Burbank, 2010; Scherler et al. 2011; Rowan et al., 

2015). In tectonically active mountain ranges such as the Himalaya, rapid rock uplift and surface 

processes (e.g. glacial and periglacial erosion and mass movement) result in large sediment fluxes from 

surrounding hillslopes to glacier surfaces. Rock debris is incorporated and transported englacially to the 50 

ablation area where it melts out to form a supraglacial debris layer (Scherler et al., 2011). In the 

Himalaya, about 13% of the glacierised area (Kääb et al., 2012) and over 40% of the ice mass in 

ablation areas is debris covered (Kraaijenbrink et al., 2017). In the Everest region 25–36% of the 

glacierised area is debris covered (Ragettli et al., 2015; Thakuri et al., 2014; Vincent et al., 2016). 

Debris thicknesses exceeding 2.0 m are common on the lower parts of these glaciers (McCarthy et al., 55 

2017; Nicholson and Benn, 2013). A general trend of glacier mass loss during the last century (Bolch et 

al., 2012) has reduced glacier volumes and velocities (Quincey et al., 2009) promoting the thickening 

and expansion of supraglacial debris (Thakuri et al., 2014).  

 

Supraglacial debris modifies the impact of atmospheric warming on glacier mass balance by changing 60 

the distribution and magnitude of ablation of the underlying ice (Nicholson and Benn, 2006; Østrem, 

1959). The empirical relationship between debris thickness and ablation is referred to as the Østrem 

curve (Østrem, 1959); where debris is patchy or thin, ablation can be greater than that for a clean-ice 

surface, due to efficient heat transfer through the debris and the lower albedo of rock debris compared 

to clean ice. Once debris reaches an effective thickness the gradient of the Østrem curve reverses and 65 

ablation decreases as insulation of the ice increases with debris thickness (Brock et al., 2010; Mihalcea 

et al., 2006; Nicholson and Benn, 2006; Reid et al., 2012). The properties of the debris layer in addition 

to its thickness also modify thermal transfer; numerical experiments for Miage Glacier in the Italian 

Alps showed that the moisture content and latent heat flux of debris layers affect ablation, with moist 

debris reducing ablation compared to dry debris, mainly due to heat extraction by the latent heat flux 70 

(Collier et al., 2014).  
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Glacier mass change can be estimated from multi-temporal satellite observations of surface lowering 

where emergence velocities are known. These observations indicate accelerating mass change in the 

Everest region from –0.32 ± 0.08 m water equivalent (w.e.) a-1 between 1970–2007 (Bolch et al., 2011) 75 

to –0.58 ± 0.19 m w.e. a-1 between 2000–2015 (King et al., 2017). Other studies based on remotely 

sensed data have observed similar rates of mass loss between debris-covered and clean-ice glaciers (e.g. 

Kääb et al. 2012). This anomalous behaviour could be explained by the enhancement of ablation at ice 

cliffs within the debris-covered ablation area (e.g. Gardelle et al., 2013; Immerzeel et al., 2013). 

However, studies made at the glacier or catchment scale show a different trend. A recent survey of the 80 

mass balance of debris-covered Changri Nup Glacier in the Everest region demonstrated that mass loss 

from a debris-covered glacier surface in the absence of exposed ice cliffs was about 50% of that from an 

equivalent clean-ice glacier (Vincent et al., 2016). Hydrological modelling of glacier mass change in the 

Langtang region of Nepal suggests a loss of 35–55% of the glacierised area by 2100, but only 25–33% 

loss of debris-covered glacier area over the same period (Rageletti et al., 2016). These conflicting 85 

results demonstrate that the spatial variability of supraglacial debris thickness needs to be incorporated 

into calculations of glacier-wide and regional mass balance.  

 

Across the majority of the glacierised area in the Everest region, supraglacial debris thickness 

significantly exceeds the few centimetres that control the change between between ablation 90 

enhancement and ablation reduction (Østrem, 1959). However, ablation beneath supraglacial debris is 

challenging to measure directly (e.g. Vincent et al. 2016; Rounce et al., 2015). Stake measurements are 

only representative of point mass balance, and difficult to extrapolate across the ablation area due to 

high spatial variability in debris thickness that promotes differential ablation (Benn et al., 2012). We 

therefore seek a method to calculate ablation from other variables such as debris thickness, air 95 

temperature and debris temperature (e.g. Collier et al., 2014; Nicholson and Benn, 2013; Rounce et al., 

2015) particularly as progress is being made towards accurately constraining these variables from 

remote observations (e.g. Mihalcea et al., 2008; Rounce and McKinney, 2014).  

 

In this study, we measured near-surface air temperatures as well as temperatures through debris layers 100 

of varying thicknesses at a number of locations on Khumbu Glacier in the Everest region of Nepal 

during the 2014, 2015 and 2016 monsoon seasons (May–October). The thermal properties of the debris 

revealed by these measurements were compared with previous work at Khumbu Glacier (Kayastha et 

al., 2000) and at two other glaciers in the Everest region (27.5°N, 86.6°E), Ngozumpa and Imja-Lhotse 

Shar Glaciers. Ablation was calculated using our observations with a positive degree-day approach, a 105 

downward heat flux method, and a numerical model that explicitly treats heat diffusion through 

supraglacial debris (Collier et al., 2014). We compared our calculated ablation values with stake 
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measurements where available and surface lowering observations to quantify the contribution of sub-

debris ablation to glacier-wide mass loss.  

 110 

2. Debris cover and ablation at Khumbu Glacier 

2.1 Khumbu Glacier 

Khumbu Glacier (Fig. 1) is a large debris-covered glacier 15.4 km long with an area of 19.1 km2 (not 

including the detached tributaries Changri Nup and Changri Shar Glaciers; 11.4 km2), with altitudes 

ranging from 4,926 m to 7,870 m above sea level with a median of 5,610 m (RGI Consortium, 2017). 115 

Khumbu Glacier flows westward from the southern and eastern slopes of Mt. Everest and Lhotse, and 

turns to the south after the icefall, within which the equilibrium line is located (Benn and Lehmkuhl, 

2000; Inoue, 1977). The debris layer is several metres thick near the terminus and generally thins up-

glacier to the base of the icefall (Nakawo et al., 1986). The grain size of the supraglacial debris ranges 

from boulders many metres in diameter to fine sand and silt (Fig. 2). Velocity is variable along the 120 

length of the glacier; maximum velocity of up to 70 m a-1 occurs below the icefall while the lowermost 

4–5 km of the glacier appears to be stagnant or slow flowing (observed annual flow is less than the 15 

m pixel size of the satellite image) through the debris-covered section (Quincey et al., 2009) and any 

movement is likely due to deformation of the ice (Watson et al., 2017). The glacier surface 5–6 km 

from the terminus has developed high relief associated with differential ablation, which is more 125 

pronounced on the true left where there are numerous ice cliffs and supraglacial ponds; supraglacial 

lake area is expanding but is less developed than similar systems found at Ngozumpa and Imja-Lhotse 

Shar Glaciers (Watson et al., 2017).  

 

2.2 Supraglacial debris thickness 130 

Supraglacial debris thickness on Khumbu Glacier varies from a continuous thin (defined here as <0.5 

m) coverage to several metres thick. Thin, patchy debris is only found in the relatively narrow transition 

zone between the clean ice of the accumulation area and the heavily debris-covered ablation area. An 

estimate of debris thickness made in 1978 from observations of debris overlying ice cliffs was 0.5–2 m 

across the entire debris-covered surface and increased exponentially down-glacier to reach greater than 135 

2 m thick near the terminus (n = 50) (Nakawo et al., 1986). Measurements made in 2014 by excavation 

of the debris layer ranged up to 3.0 m with a mean value of 0.35 m (n = 64) (Soncini et al., 2016). Our 

measurements, made in 2014 by excavation, estimated that 80% of the area between the terminus and 

3.5 km upglacier was covered with debris greater than 1 m thick (n = 143) with thinner (0.04–1.0 m) 

debris observed at the perimeter of supraglacial ponds or on the top of ice cliffs. Debris was thickest in 140 

the southwest of the lower ablation area within 1.5 km of the terminal moraine, with thinner debris 

along the eastern margin of the lower ablation area around a network of supraglacial ponds.  
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2.3 Mass balance 

Mass balance measurements using ablation stakes in experimental plots in the upper ablation area on 145 

Khumbu Glacier were made by Kayastha et al. (2000) in August 1974 and August 1976. The estimated 

loss of ice across the debris-covered area was up to 6.5 mm w.e. day-1 depending on debris thickness. 

Four stake measurements were made at two sites between 5050–5240 m during 12 periods between 8 

May and 9 October 2014 beneath debris 0.01–0.09 m thick, which gave ablation ranging from 12.3 mm 

w.e. day-1 to 21.4 mm w.e. day-1 (Soncini et al., 2016). Taking the mid-point of this range and 150 

extrapolating the daily value to the entire measurement period gives ablation of –2.60 m w.e. a-1. On 

Changri Nup Glacier at 5470 m, 13 ablation stake measurements were made from November 2014 to 

November 2015 through artificially constructed debris thicknesses of 0 m to 0.41 m and recorded mass 

balance values of –1.35 to –1.98 m w.e. a-1 (Vincent et al., 2016). Applying a continuity equation over 

the debris-covered tongue of Changri Nup Glacier, Vincent et al. (2016) showed that the area-averaged 155 

ablation was strongly reduced by the debris cover compared with an equivalent clean-ice glacier. 

 

Degree day factors (DDFs) calculated previously for Khumbu Glacier using measurements collected 

over 12 days in late May were 11.1 mm w.e. °C-1 day-1 beneath 0.1 m of debris, 5.3 mm w.e. °C-1 day-1 

beneath 0.4 m of debris, and 16.9 mm w.e. °C-1 day-1 for clean ice (Fig. 3; Kayastha et al., 2000). These 160 

measurements indicated greater ablation than that observed beneath similar debris thicknesses at 

Koxkar Glacier in the Tien Shan (Juen et al., 2014) and Belvedere Glacier in the Italian Alps 

(Nicholson and Benn, 2006), and were higher than the mean clean-ice DDF of 9.3 mm w.e. °C-1 day-1 

for Glacier AX010 measured over three summer months at altitudes between 4950 and 5250 m, and 

clean-ice DDF for Lirung and Raikot Glaciers of 6.6 mm w.e. °C-1 day-1 (Kayastha et al., 2000). For 165 

comparison, DDFs measured at Chhota Shigri Glacier in the Indian Himalaya between 4300 and 4900 

m were 3.34 ± 0.20 mm w.e. °C-1 day-1 for debris cover, 5.28 ± 0.14 mm w.e. °C-1 day-1 for snow, and 

8.63 ± 0.18 mm w.e. °C-1 day-1 for ice (n = 192; 22 from the debris-covered section) (Azam et al., 2014). 

 

3. Methods 170 

This section describes the field-data collection methods used in this study at five sites on Khumbu 

Glacier (KH1–5). Similar methods were used at two sites on Ngozumpa Glacier (NG1 and NG2) and 

four sites on Imja-Lhotse Shar Glacier (IM4, IM11, IM13 and IM14). 

 

3.1 Off-glacier meteorological measurements 175 

Air temperature (Ta), precipitation and snowfall were measured at the Pyramid Observatory adjacent to 

the tongue of Khumbu Glacier at 5035 m (Fig. 1) between 1997 and 2011. Precipitation was measured 

using a Geonor T-200BM sensor that captures all precipitation phases and corrected for snow 

undercatch following World Meteorological Office recommendations (Sherpa et al., 2017). 
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 180 

3.2 On-glacier air and debris temperature measurements 

We measured Ta, near-surface debris temperature (Ts), and temperatures within the debris layer (Td) 

down to the debris–ice interface (Ti) at four sites (KH1–4) on Khumbu Glacier through the 2014 

monsoon season. Further Ta, Ts and Td data were collected using the same approach at KH1 through 

winter 2014/2015, and at KH2 and KH5, through 2015/16 (Table 1). All sites were located on gently 185 

inclined slopes offset from the crests of topographic highs where debris was less than a metre thick. At 

KH1, 2, 3 and 5, debris was dominated by light-coloured gneiss and leucogranite with minor schist 

fragments, whereas at KH4 debris contained gneiss and leucogranite but were generally darker and 

more angular due to a greater proportion of schist. The grain size of the debris ranged between coarse 

sand and decimetre-sized clasts, and was generally finer than the bulk grain size of the whole debris 190 

layer as sites were chosen where sections could be excavated rather than where metre-scale boulders 

occupied the glacier surface (Fig. 2). At KH3, redistribution of the debris by mass movement and 

collapse of the underlying ice began to exhume thermistors from within the debris after 3 June 2014. At 

KH4, the thermistor measuring Ta malfunctioned on 12 October 2014 and measurements made after this 

time were discarded. At KH1, measurements continued through the winter until 20 October 2015, while 195 

KH2 was re-instrumented and KH5 was established nearby for 2015/16 (Table 1).  

 

At each site, a vertical section was excavated and thermistors were placed within the exposed section at 

measured intervals between the debris surface and the debris-ice interface. The excavated debris was 

then replaced as close to the original condition as possible. The thermistors that measured Ts were 200 

shielded from incoming shortwave radiation by covering them with debris about 0.02 thick. Ta was 

measured using thermistors mounted in naturally ventilated radiation shields 1 m above the glacier 

surface at each site. All thermistors were connected to Gemini Tiny Tag Plus2 TGP-4520 dataloggers 

that have a stated accuracy of ±0.4°C, and temperature was sampled every 30 minutes. The 

manufacturer calibrated the equipment before use, and at the end of the data collection measurements at 205 

room temperature agreed within the stated accuracy. The location and altitude of each site was 

measured using a Garmin GPSmap 62s handheld unit, which has a stated accuracy of ±5 m in the 

horizontal plane and ±3 m in the vertical plane. 

 

3.3 Comparison with Ngozumpa and Imja-Lhotse Shar Glaciers 210 

Data collected from five sites on Khumbu Glacier between May 2014 and September 2016 were 

compared to those collected at two sites on Ngozumpa Glacier between November 2001 and October 

2002 (Nicholson and Benn, 2013) and November 2014 and April 2016 (S. Thompson, unpublished 

data) and at four sites on Imja-Lhotse Shar Glacier between May and October 2014 (Rounce et al., 

2015). These three debris-covered glaciers are located adjacent to each other and have several factors in 215 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239
Manuscript under review for journal The Cryosphere
Discussion started: 30 November 2017
c© Author(s) 2017. CC BY 4.0 License.



 7 

common; their ablation areas are covered with extensive debris layers, composed of a mixture of clasts 

of leucogranite, sillimanite-grade gneiss and minor schist (Benn et al., 2012). Mean debris thickness 

measured at two sites within 7 km of the terminus of Ngozumpa Glacier in 2001 was 1.25 ± 0.75 m (n = 

218) (Nicholson and Benn, 2013) and on part of Imja-Lhotse Shar Glacier in 2013 was 0.42 ± 0.29 m (n 

= 25) (Rounce and McKinney, 2014). The on-glacier Ta, Ts, Td and Ti timeseries from these three 220 

glaciers do not always cover the same periods, with several weeks missing at the start or end of the 

monsoon season due to the timing of field visits. Any data gaps were excluded from analyses. All 

temperature data were compared using values for the monsoon season when the debris was unlikely to 

be snow covered (03 June to 11 October), as well as for summer (1 May to 31 October) and winter (1 

November to 30 April). 225 

 

Ngozumpa Glacier (Fig. 1) is the largest glacier in Nepal located 25 km to the west of Mt. Everest, with 

an area of 79.5 km2 and altitudes ranging from 4686 m to 8176 m with a median of 5698 m (RGI 

Consortium, 2017). The 18-km long glacier flows southward from cirques where most accumulation 

occurs by ice and snow avalanching, down to about 4659 m. The lower 15 km of the glacier is covered 230 

in rock debris increasing in thickness to reach 1–3 m towards the terminus (Nicholson, 2005). Surface 

topography in the debris-covered glacial ablation area is highly irregular, with a typical local relief of 

30–50 m, and ice cliffs exposed within this hummocky terrain account for only 5% of the surface area 

but 40% of the mass loss of the lower terminus (Thompson et al., 2016). Td was measured on 

Ngozumpa Glacier at two sites (Fig. 1); NG1 was a vertical profile through 0.75 m of typical diamictic 235 

debris that did not reach the debris-ice interface. Measurements were made every 30 minutes from 

November 2001 to October 2002 using Gemini thermistors and Tinytag Plus TGP-0073 loggers with a 

stated accuracy of ±0.3°C at 0°C. NG2 was a vertical profile through 1.8 m of debris at the surface of an 

ice cliff. Measurements were made using a Geoprecision thermistor array with a stated accuracy of 

±0.25°C from 30 November 2014 to 4 April 2016 at six hour intervals. The ice temperatures measured 240 

at NG2 are not analysed here but indicate temperate ice in the upper few metres of the glacier. 

 

Imja-Lhotse Shar Glacier (Fig. 1) is a smaller debris-covered glacier located 12 km southeast of 

Khumbu Glacier with an area of 15.3 km2 that refers to both the northwest-flowing Imja Glacier and 

southwest-flowing Lhotse Shar Glacier that converge and terminate into a proglacial lake. Altitudes 245 

range from 5021 m to 7998 m with a median of 5469 m (RGI Consortium, 2017). There is extensive 

debris cover below 5200 m on Imja Glacier and below 5400 m on Lhotse Shar Glacier. Td was 

measured at four sites located about 1 km upglacier from the lake-calving terminus at 5045–5055 m 

(Fig. 2). Debris thicknesses were 1.5 m (IM4), 0.45 m (IM11), 0.33 m (IM13) and 0.26 m (IM14). 

Temperature measurements were made every 30 minutes from 19 May to 9 November 2014 using T&D 250 

Corporation TR-42 Thermo Recorder sensors with a stated accuracy of ±0.3°C. Stake measurements 
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made in 2014 for three sites indicated ablation of 0.85 m at IM13 and greater than 1.0 m at IM11 and 

IM14 (Rounce et al., 2015). 

 

3.4 Ablation calculations 255 

Three different methods for calculating ablation beneath supraglacial debris are compared using the 

data collected at Khumbu, Ngozumpa and Imja-Lhotse Shar Glaciers.  

 

3.4.1 Degree Day Factors 

Ablation was calculated using DDFs derived from a previous study of Khumbu Glacier (Fig. 3; 260 

Kayastha et al., 2000). We fitted a power-law function to the five available data points spanning debris 

thickness (hd) from 0.05 m to 0.4 m and extrapolated this relationship to derive: 

 

DDF = 3.4554 * hd
–0.577             (1) 

 265 

Using Equation 1 and assuming that similarities in debris characteristics will give similar results for 

these three Everest region glaciers, DDFs for the hd represented here (0.26–2.0 m) range from 7.52 mm 

w.e. °C-1 day-1 to 2.32 mm w.e. °C-1 day-1. The number of positive degree days used to calculate total 

ablation by multiplication with the DDF was summed from the positive mean daily Ta during the 

monsoon season for each site.  270 

 

3.4.2 Downward heat flux 

Ablation can be calculated from the heat flux through supraglacial debris to the underlying ice as:  

 

M = Qm / ρ * Lf     (2) 275 

 

where M is surface lowering in m s-1 and equal to ablation assuming that the emergence velocity is zero 

(i.e. for stagnant ice, as has been established for our study sites by Quincey et al., 2009), Qm is 

downward energy flux delivered to the underlying ice in W m-2, ρ is the density of ice and Lf is the 

latent heat of fusion (334 kJ kg-1). The energy flux, Qm, is approximated by the effective conductive 280 

heat flux through the overlying debris, which is controlled by the temperature gradient through the 

debris layer (δTd/δhd) and the effective thermal conductivity (k). A useful simplification is to assume 

that δTd/δhd is linear. While this is not generally the case instantaneously (e.g. Rounce et al., 2015) this 

is suggested to be true on daily or longer intervals (Nicholson and Benn, 2006). Qm can therefore be 

stated as: 285 

 

Qm = Qc = –k * (Ts,mean – Ti,mean) / hd    (3) 
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where Qc is the conductive heat flux, and Tmean are daily mean values. k can be estimated by comparing 

the result of this calculation with ablation measured using a stake, or calculated if the effective thermal 290 

diffusivity, density, water content and specific heat capacity of the debris layer are known or estimated. 

Published values of k for supraglacial debris measured on glaciers in Nepal and Europe are in the range 

0.5–1.8 W m-1 °C -1 (Table 2). These values are sensitive to debris water content; k can be 2–3 times 

greater for saturated debris than dry debris (Nicholson and Benn, 2006).  

 295 

Here, k was computed following the method of Conway and Rasmussen (2000): Temperatures were 

resampled to hourly increments, and apparent thermal diffusivity was taken as the linear fit between the 

derivative of temperature plotted against the second derivative of temperature with depth. Apparent 

thermal diffusivity was determined for; (a) the bulk layer using data from all levels of the debris cover 

simultaneously, and (b) each level individually. Visual inspection of plots allowed assessment of the 300 

presence of non-conductive processes (e.g. convective or latent heat exchange) within the debris profile. 

On this basis, the site with the least evidence of non-conductive processes was selected from each 

glacier and thermal conductivity was computed from the bulk apparent thermal diffusivity for the 

summer months of July and August. This two-month measurement period was deemed to be 

representative of the core ablation season and was used because these months show stable Td above 305 

0°C, and is therefore not affected by seasonal temperature or water phase change, that have been shown 

to affect k (Nicholson and Benn, 2013). k was calculated from the apparent thermal diffusivity using the 

same values for the density of rock (2700 kg m−3), volumetric heat capacity of rock (750 J kg−1 °C-1 ± 

10 %), and effective porosity (0.33) as in previous studies in the region (Conway and Rasmussen, 2000; 

Nicholson and Benn, 2013; Rounce et al., 2015). A conservative error on the volumetric heat capacity 310 

of 10% was assumed in line with previous studies (e.g. Conway and Rasmussen, 2000). Few data are 

available with which to quantify the uncertainties in the calculation of k using the method described 

here, and we consider this value to be representative based on the range of possible values tested by 

Nicholson (2005). Error in the calculated apparent thermal diffusivity are included in the total error. M 

was calculated using daily mean Ts and assuming that Ti was zero. If δTd/δhd was negative then ablation 315 

was assumed to be zero. 

 

3.4.3 Thermal diffusion model 

We used a point-based surface energy balance and thermal diffusion model of supraglacial debris to 

estimate the flux of heat through the debris layer and ablation at the ice surface. The numerical model is 320 

described by Collier et al. (2014; 2015). For this study, the model configuration and debris physical 

properties were specified following Collier et al. (2015) and Nicholson and Benn (2013). The vertical 

debris column was resolved into 0.01 m layers and porosity decreased linearly from 40% to 20% with 
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depth. The properties of each layer were computed as weighted functions of representative whole-rock 

values and the contents of the pore space (air, water, ice), such that a whole-rock value for k of 2.5 W 325 

m-1 °C-1 would give bulk k values through the debris column between 1.5 W m-1 °C-1 and 2.0 W m-1 °C-

1. The model was run in a simplified form wherein Ts was specified from observations collected every 

30 minutes during the 131-day monsoon season (3 June to 11 October). As a result, the surface energy 

balance terms as well as snow variables were not simulated. For dry debris simulations, the model was 

therefore essentially reduced to a diffusion model in the glacier column down to a total depth of 10 m, 330 

with a grid spacing of 0.01 m in the debris followed by variables levels in the underlying ice, ranging in 

thickness from 0.01 m near the debris-ice interface down to 2 m near the base of the ice column. For 

moist simulations, instantaneous infiltration of moisture from precipitation measured at the Pyramid 

Observatory (Fig. 4; assumed to be liquid and provide zero heat flux to the debris) was also considered, 

with phase changes simulated depending on the simulated Td. Since the surface energy balance was not 335 

simulated and near-surface vapour pressures were unavailable, vapour fluxes in the debris were set to 

zero. The air density in the debris pore space was specified from a standard atmosphere at 5000 m.  

 

Using this simplified model, three experiments were performed:  

1. To compare simulated ablation rates between sites using standardised debris properties. The 340 

model was forced with 30-minute Ts from four sites; KH1 (hd = 0.9 m), KH2 (0.6 m); KH4 (0.2 

m), and NG1 (0.65 m). The debris was treated as dry and precipitation was considered to be 

zero. k was computed from the whole-rock value of 2.5 W m-1 °C-1 used Collier et al. (2015). 

2. To apply field-measured bulk effective k values to allow comparison with the downward heat 

flux method. These simulations were identical to those in Experiment 1 except that this used 345 

glacier-specific k values of 0.977 W m-1 °C-1 (KH1) and 1.432 W m-1 °C-1 (NG1). 

3. To assess the impact of a moist debris layer compared to Experiment 1. The model simulated 

dry and moist debris at KH1 for summer 2015, KH2 for summer 2014; and KH4 for summer 

2014. These simulations were forced by Ts resampled to 60-minute intervals to correspond to the 

60-minute precipitation measurements from the Pyramid Observatory. 350 

The debris depths used in these experiments refer to the thickness overlying the deepest thermistor in 

the debris layer, which corresponds to the thickness down to the debris-ice interface at all sites except 

NG1 and KH1. Therefore, at these two sites we expected that the model would simulate overly cold 

basal debris temperatures. As Ts was not available at KH2 for summer 2014, simulations for this period 

were forced with Ts from KH1 over the same period. 355 

 

4. Results 

Air (Ta) and near-surface (Ts) and debris temperature (Td) measurements from five sites on Khumbu 

Glacier are presented here. Some of these timeseries are incomplete, as data collection at several sites 
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was affected by movement of the glacier surface due to debris slumping or ice collapse during the 360 

ablation season. At KH2, although a thermistor was placed at the debris-ice interface at the start of the 

measurement period in 2014 and the site remained intact, ablation of the underlying ice caused the 

thermistor to migrate with the base of the debris resulting in positive Ti (Fig. 4); these observations are 

discussed in Section 6.1. At KH3, the glacier surface collapsed in early June 2014 and exhumed the 

sensors so Ts and Td measurements after the start of the monsoon are considered unreliable and only Ta 365 

is used for analysis. All p < 0.05. 

 

4.1 Timing and character of the monsoon 

Meteorological observations made between 1994 and 2011 indicate that the monsoon season in the 

upper Khumbu valley is characterised by cumulative precipitation amounts between 382 mm and 442 370 

mm (Bollasina et al., 2002). The timing of the monsoon season at Khumbu Glacier in 2014 was similar 

to previous years, as indicated by precipitation and Ta measurements made at the Pyramid Observatory 

and our on-glacier data (Fig. 4). We therefore consider the monsoon season as the 131-day period 

between 3 June and 11 October when mean daily Ta were consistently above 0°C and some 

precipitation occurred on most days (122 out of 131 days) with values up to 21.4 mm day-1 and a mean 375 

daily value of 3.1 ± 4.1 mm day-1. During the monsoon season, mean daily Ta initially rose to give 

several days with particularly high values in mid-August then remained high until the last week of 

September (Fig. 4). The majority of precipitation occurred during July and August. We sub-divided the 

monsoon season into early, middle and late stages on the basis of these observations of Ta and 

precipitation (Table 3).  380 

 

We observed a storm that deposited decimetres of snow over several days at the end of May (Fig. 4) 

recorded by precipitation measurements of up to 26.5 mm day-1 (mean of 7.7 ± 10.5 mm day-1) at the 

Pyramid Observatory (Fig. 4). A similar snowstorm occurred during mid-October as a result of Cyclone 

Hudhud, which reached Nepal on 14 October 2014 and resulted in a marked drop in Ta and increased 385 

precipitation (Shea et al., 2015). At Khumbu Glacier in mid-October, precipitation was up to 27.9 mm 

day-1 with a mean of 4.9 ± 9.0 mm day-1. During both snowstorms, mean daily Ta was close to or below 

0°C and precipitation amounts were greater than 20 mm day-1. Ts and Td were depressed below 0°C 

(Fig. 4e–h) with no detectable diurnal signal despite warm daytime Ta (Fig. 5). We consider these 

snowstorms to comprise part of the pre-monsoon (25 May to 2 June) and post-monsoon (12 October to 390 

19 October) seasons, in line with similar transitional periods recorded in previous years at the Pyramid 

Observatory (Bonasoni et al., 2010). Similar events were observed at Imja-Lhotse Shar Glacier in 2014, 

where the debris was assumed to be snow-covered and ablation assumed to be zero during 26 May–1 

June and 13–20 October (Rounce et al., 2015).  

 395 
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4.2 Air temperatures (Ta) 

During the monsoon season, minimum mean daily Ta across Khumbu Glacier was –2.0°C on the last 

day of the monsoon season (12 October 2014) at KH4, and maximum daily mean Ta was 13.0°C on 5 

August at KH2 (Fig. 5). Seasonal mean Ta ranged from 5.5 ± 2.4°C at KH2 to 3.9 ± 2.1°C at KH4. Ta 

rose from a daily mean of around 0°C during the pre-monsoon to around 4°C over four days at the start 400 

of the early monsoon, and the debris profiles started to warm rapidly three days after Ta increased (Fig. 

4). Maximum Ta was reached by 7 August, and for this week (7–14 August) maximum daily Ta were 

between 5.8 ± 0.9°C at KH4 and 8.1 ± 1.8°C at KH2. The mean diurnal Ta range varied between 11.3 ± 

3.2°C at KH2 and 14.1 ± 3.6°C at KH4, and showed cycles of between four and seven days when the 

diurnal Ta range decreased across all four sites simultaneously (Fig. 6). During the late monsoon, Ta 405 

declined at a similar rate at all sites from 3–5°C and remained close to 0°C. Ta were compared with 

each other and with measurements made at the Pyramid Observatory 50 m higher than KH1–3, and 130 

m lower than KH4. There was a good correlation between Ta at KH2 and KH4 through the pre-monsoon 

and early monsoon (r2 = 0.95 and 0.94), which weakened after 15 July when Ta at KH2 rose earlier in 

the day than at KH4, leading by 3.5 hours and 5 hours in the middle and late monsoon.  410 

 

4.3 Near-surface debris temperatures (Ts) 

Daily mean Ts through the 2014 monsoon season at KH2 was 7.0 ± 2.0°C and at KH4 was 6.6 ± 2.1°C 

(Table 4). For comparison, daily mean Ts through the 2015 monsoon season at KH1 was 9.7 ± 2.3°C 

assuming the same duration as in 2014. Ts rose more rapidly than Ta in the morning and remained 415 

higher as Ta fell in the afternoon (Fig. 7). The mean diurnal range of Ts was greater than that of Ta; 21.2 

± 5.9°C for Ts compared to 11.3 ± 3.2°C for Ta at KH2, and 22.1 ± 4.0°C for Ts compared to 14.1 ± 

3.6°C for the Ta at KH4. There was a good correlation between mean daily Ta and Ts at KH2 in the early 

monsoon (r2 = 0.93), which weakened as the lag increased from zero in the early monsoon to four hours 

during the late monsoon. The lag between Ta and Ts depends on the transfer time to heat the air as the 420 

debris surface warms and is dependent on the rate of turbulent heat exchange, and may be shorter at 

KH4 due to less turbulence and stronger katabatic winds at this higher-elevation site. Cross-correlation 

of Ta and Ts showed that Ts tracked Ta most strongly during the early and late monsoon (r2 = 0.93 and 

0.91) but that this relationship weakened during the middle monsoon (r2 = 0.54) which could be due to 

deposition or evaporation of snow during this period. Conversely, there was a strong correlation but no 425 

lag between Ta and Ts at KH4 where the debris was thin throughout the early, middle and late monsoon 

(r2 > 0.96) (Fig. 7). The shorter lag between Ta and Ts at KH4 compared to KH2 may be due to more 

effective heating over thinner debris as this is generally found at higher elevations (cf. Steiner and 

Pelliciotti, 2016).  

 430 

4.4 Debris layer temperatures (Td and Ti) 
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During the pre-monsoon in 2014, mean daily Td at each site was close to 0°C throughout the vertical 

profiles as a result of a snowstorm. The debris profiles started to warm shortly after Ta increased at the 

start of the monsoon season, with positive mean daily Td penetrated at least halfway through the debris 

thickness within five days (Fig. 4). The rapid increase in the diurnal range of Ts one day before the end 435 

of the pre-monsoon at KH4 and a day earlier at KH2 (Fig. 5) suggests that the snowpack did not remain 

in place once the monsoon season started. Td in at least the upper half of each profile remained above 

0°C for around 12 days after Ta fell to 0°C during the late monsoon, and only cooled below 0°C when 

Ta dropped to around –5°C during the post-monsoon with the arrival of a snowstorm resulting from 

Cyclone Hudhud. A less pronounced depression of Ta and Td was observed at KH1 in 2015 and 440 

potentially 2016, and NG1 in 2002 (Fig. 4). However, the debris layer did not freeze during these 

periods, suggesting that the snowstorms during the pre-monsoon and post-monsoon in 2014 were 

exceptionally cold periods.  

 

At KH2, mean daily Ti was 2.3 ± 1.3°C due to migration of the sensor (see Section 6.1). A lag of 445 

approximately 8–9 hours between Ta and Ti was observed. There was no significant correlation between 

Ta and Ti during the pre-monsoon and post-monsoon, and only weak correlation (r2 < 0.29) during the 

monsoon season. Cross-correlation showed a reasonable correlation between Ta and Ti through the early 

and middle monsoon (r2 = 0.50 and 0.51) and a stronger relationship in the late monsoon (r2 = 0.91). 

The relationship between Ta and Ti was weaker during the pre-monsoon (r2 = 0.44) and post-monsoon 450 

(r2 = 0.47). The amplitude of the diurnal Ti cycle at KH2 was about 0.4°C until 15 July, after which the 

diurnal range increased at a rate of 0.7°C day-1 to 6.8°C at the end of the monsoon season such that 

daily freeze-thaw cycles occurred at the debris-ice interface at this site. Daily mean Ti reached a 

maximum of 5.0°C on 5 September, then decreased to about 1.5°C at the end of the monsoon season. 

These results suggest that the sensor at the debris-ice interface migrated and therefore we do not 455 

consider these results to represent Ti after this occurred. At KH4, mean daily Ti was 0.2 ± 0.1°C and the 

lag between peak daily Ta and peak daily Ti was 2 hours in the early and middle monsoon, which 

increased to 4.5 hours in the late monsoon. Cross-correlation showed strong correlation between Ta and 

Ti during the early and middle monsoon at KH4 (r2 > 0.92) that weakened in the late monsoon as the 

diurnal Ta signal reduced in amplitude. Ti remained close to zero throughout the monsoon season (Fig. 460 

7d–f). The mean daily diurnal range of Ti was approximately 1.0°C throughout the monsoon season.  

  

4.5 Regional comparison of Td profiles 

We compared the mean debris thickness–debris temperature (δTd/δhd) profiles at KH1 (2014 and 2015), 

KH2 (2014), KH4 (2014) and KH5 (2015) with measurements from NG1 (2001–2002) and NG2 465 

(2014–2016) and IM4, IM11, IM13 and IM14 (all 2014) (Fig. 8). During the summer and monsoon 

seasons, Td generally decreased with increasing hd, and the rate of Td decrease with depth was 
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approximately linear in the upper and lower parts of the debris layer. Summer δTd/δhd fitted into groups 

according to hd (Fig. 8a). Where debris was thick (>0.5 m), summer δTd/δhd gave a mean of –4.0°C m-1. 

Where debris was thin (<0.5 m), mean Td was generally colder and δTd/δhd was steeper compared to the 470 

profiles through thick debris with a mean of –18.2°C m-1. KH2 (hd = 0.7 m) had a similar δTd/δhd to the 

thicker debris layers but similar Td values to the thin debris layers. In each case, Td at the greatest depth 

measured was about 4°C cooler than Ts with a slightly greater difference, of about 1°C through thin 

debris. The depth of maximum inflection in the δTd/δhd profile varied between about 0.5 m for thick 

debris and about 0.1 m for thin debris. Summer δTd/δhd were approximately linear suggesting that daily 475 

mean Td gives a good approximation to a linear profile (Nicholson and Benn, 2006) whereas 

instantaneous Td measurements are unlikely to do so (Rounce et al., 2015). During the pre- and post-

monsoon, δTd/δhd were close to zero as Td was constant through the entire thickness when the debris 

was snow covered.  

 480 

Winter δTd/δhd showed similar trends at both Khumbu and Ngozumpa Glaciers despite being collected 

during different years (Fig. 8b). Winter δTd/δhd were steeper and had narrower ranges of Td than the 

summer profiles. Mean Td was –4.9°C at KH1, –3.2°C at KH5, –3.0°C at NG1, and –2.8°C at NG2. Td 

throughout the debris layer at each site remained below 0°C. Winter δTd/δhd through these thick debris 

layers had a mean of 1.1°C m-1 reflecting a reversal at three of the five sites compared to the summer 485 

profiles. KH2 showed a total decrease in Td of about 1°C through the debris layer, giving a similar value 

at the debris-ice interface to that recorded at KH5. At NG2, Td decreased by about 0.5°C through the 1.8 

m profile. At NG1, KH1 and KH5, Td increased slightly with increasing debris thickness in winter 

whereas an opposing trend with a similar gradient was observed at KH2. 

 490 

At six sites (KH2, 3, 4, 5, NG2 and IM14), Ti was measured by the lowest thermistors installed in 

contact with the debris-ice interface. Positive Ti were recorded from 13 May 2014 at KH2, suggesting 

that ablation was already taking place before the onset of the monsoon season. The number of days for 

which Ti was positive after the start of the pre-monsoon (25 May 2014) was 145 at KH2 (mean value of 

2.3°C; see Section 6.1), 120 at KH4 (0.2°C), 143 at NG2 (1.3°C) and 153 at IM14 (0.2°C; where 495 

thermistors were installed from 31 May and recorded positive values so may include an additional six 

days of ablation). Ti remained positive at IM14 until the end of the summer (31 October) whereas at 

KH2 and KH4, Ti was negative by the end of the monsoon season (16 October and 3 October). The 

measurement record for KH5 ends on 11 May 2016 and no positive Ti were recorded, suggesting that 

sustained pre-monsoon ablation only occurs from around mid-May. 500 

 

5. Estimating sub-debris ice ablation on Himalayan debris-covered glaciers 

5.1 Degree Day Factors 
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The total positive degree days (PDDs) were 386–524°C over 131 days on Khumbu Glacier in 2014, and 

436°C on Ngozumpa Glacier in 2002 (Table 4). Ta was not measured by Rounce et al. (2015) at Imja-505 

Lhotse Shar Glacier so the authors used measurements made at the Pyramid Observatory which they 

adjusted using a lapse rate of –6.5°C km-1 to account for the 15 m higher altitude of the surface of their 

site compared to the Pyramid Ta sensor. There are gaps in these Ta measurements totaling 21 days 

during the monsoon season (Fig. 4). Gaps were filled using the daily mean Ta at the Pyramid during the 

monsoon season (2.1°C) to give 303°C over 131 days, which scaled to 291°C to the sites at 5050 m on 510 

Imja-Lhotse Shar Glacier. Estimated total ablation ranged from 0.80 m w.e. at IM4 beneath 1.5 m of 

debris to 2.67 m w.e. at KH4 beneath 0.30 m of debris, and decreased with increasing debris thickness. 

Estimated ablation at IM13 was more than double the amount indicated by the stake measurements 

(1.91 m w.e. compared to 0.85 m w.e.). Where stakes indicated ablation greater than 1 m, calculated 

ablation was 1.59 m w.e. at IM11 and 2.19 m w.e. at IM14. 515 

 

5.2 Downward heat flux 

Estimating effective thermal conductivity (k) relies on assuming that the thermal properties of the debris 

are relatively constant in space. However, the 60-minute thermal profiles used to calculate k showed 

greater between-site variation than expected, likely as a result of non-conductive processes, rapidly 520 

changing temperatures, strong stratifications or some combination of these factors. Therefore, for each 

glacier, the site with the most linear Td profiles and the least scatter around the best fit to apparent 

thermal diffusivity was used to calculate k, assuming that this single value is representative at the 

glacier scale; a realistic assumption if the debris lithology and moisture content are consistent within 

glaciers. Calculated k was 0.98 ± 0.10 W m-1 C-1 for KH1, 1.43 ± 0.14 W m-1 C-1 for NG1, and 1.98 ± 525 

0.20 W m-1 C-1 for IM4. Calculated surface lowering (M) using these glacier-specific values for k 

ranged from 0.18 m w.e. at KH1 beneath 1.5 m of debris to 1.84 m w.e. at IM14 beneath 0.26 m of 

debris. Where the depth of the debris-ice interface was known, these values for M would give DDFs of 

2.2 mm w.e. °C-1 day-1 at KH4 beneath 0.3 m of debris, 5.8 mm w.e. °C-1 day-1 at IM13 beneath 0.35 m 

of debris, 0.8 mm w.e. °C-1 day-1 at KH2 beneath 0.7 m of debris, and 1.6 mm w.e. °C-1 day-1 at NG2 530 

beneath 1.8 m debris. The higher DDF for Imja-Lhotse Shar Glacier results from the local value for k, 

which was approximately double that for Khumbu Glacier (1.98 W m-1 °C-1 compared to 0.98 W m-1 

°C-1). 

 

5.3 Thermal diffusion model 535 

In Experiment 1, where the debris was treated as dry and precipitation input was zero, the model 

reproduced observed Td at each site, including the pre-monsoon and post-monsoon at KH2 and KH4 in 

2014 (Fig. 9). Simulated δTd/δhd were steeper than the observed values at NG1 and KH1 where debris 

thicknesses were too great to instrument down to the debris-ice interface (Fig. 10) likely because the 
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model assumed that ice was present at the location of the lowest thermistor. Observed mean Td were 540 

instead about 5°C at the base of KH1 in 2014 and NG1, and about 7°C at the base of KH1 in 2015 (Fig. 

10). As a result of this assumption these simulations will slightly underestimate ablation. Winter δTd/δhd 

calculated for all sites closely matched observed values (not shown) and included the reversed gradient 

at KH2 (cf. Fig. 8b). Total melt was similar at KH1 and KH2 where debris thickness was 1.5 m (0.38 

and 0.39 m w.e.) and greater at KH4 where debris thickness was 0.3 m (1.04 m w.e.) (Table 5). 545 

 

In Experiment 2, using glacier-specific bulk k values calculated for KH1 in 2015 (0.977 W m-1 °C-1) 

and NG1 (1.432 W m-1 °C-1) instead of the whole-rock k value from Collier et al. (2015) of 2.5 W m-1 

°C-1 made little difference to simulated summer δTd/δhd (Fig. 10) but decreased the calculated monsoon 

season ablation from 0.38 m w.e. to 0.10 m w.e. (to 26%) at KH1, and from 0.63 m w.e. to 0.33 m w.e. 550 

(to 52%) at NG1 compared to Experiment 1 (Table 5). The downward heat flux method using the same 

k values gave ablation of 0.18 m w.e. at KH1 and 0.23 m w.e. at NG1 (Table 4), which are similar to 

those simulated here. 

 

In Experiment 3, the model simulated Td and ablation at KH1 (in 2014 and 2015), KH2 (2014) and KH4 555 

(2014) as in Experiment 1, except that moisture in the debris layer was included and compared with 

equivalent dry debris layers. The moist debris layers were 0.2–0.5°C warmer than the dry debris during 

the pre- and post-monsoon (Fig. 9) due to refreezing of infiltrated precipitation within the debris layer. 

This difference is particularly apparent in 2014 due to high precipitation during the aforementioned 

snowstorms that we assume was liquid (cf. Section 3.4.3). The moist debris was then 0.1–0.6°C cooler 560 

than the dry debris at the start of the monsoon season for about a month in 2014 and about a week in 

2015 (Fig. 9) as the accumulated ice within the debris layer melted. As a result, ablation calculated 

beneath moist debris was less than half the amount compared to dry debris; 0.10 m w.e. in 2014 and 

0.13 m w.e. in 2015 at KH1 (27% and 33% of the 2015 dry debris value), 0.15 m w.e. at KH2 (37%) 

and 0.47 m w.e. at KH4 (46%) (Table 5 and Fig. 10). 565 

 

6. Discussion 

6.1 Temperature measurements at Khumbu Glacier 

Off-glacier Ta were 1.8–3.0°C cooler than those measured on-glacier (Fig. 4) due to the naturally 

ventilated radiation shields used to measure on-glacier Ta and radiative and sensible heating of the 570 

surface air from the underlying warm debris, and the relatively lower position of the thermistors (1 m 

above the glacier surface compared to 2 m at the Pyramid Observatory); r2 between the on-glacier and 

off-glacier Ta, excluding the intervals where data were not recorded at the Pyramid, were 0.79 for KH1, 

0.53 for KH2, 0.78 for KH3 and 0.78 for KH4. Ta measurements were made 1 m above the debris 

surface on Khumbu Glacier, 1.5 m above the debris surface of Ngozumpa Glacier, and 2 m above the 575 
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land surface at the Pyramid Observatory, which will influence the calculation of PDDs for each site, as 

will the choice of lapse rate used to extrapolate the measurements from the Pyramid Observatory to 

Imja-Lhotse Shar Glacier. The DDFs calculated by Kayastha et al. (2000) used Ta measured at 1.52 m 

above the debris surface; a similar height to measurements at Ngozumpa Glacier. 

 580 

Thermistors measuring Ts need to be installed at the debris surface but shielded from direct solar 

radiation. We therefore installed these thermistors beneath a thin layer of debris and measured near-

surface rather than at surface temperature (Gibson et al. 2017). Movement of the glacier surface and 

intense precipitation during the ablation season are likely to modify this by covering or uncovering 

sensors entirely. This effect on measured Ts and Td can be observed at KH3 where the surface collapsed 585 

during June 2014 and left sensors exposed at the ice and debris surface (Fig. 4). We observed little 

change in debris temperature during winter (1 November to 30 April) but during summer (1 May to 31 

October) thin debris layers (<0.5 m) transferred heat more rapidly to the underlying ice than thick debris 

layers. The start and end of the 2014 monsoon season were marked by large snowstorms, which 

deposited decimetres of snow across these glaciers and caused the debris layer to freeze. Between these 590 

periods, the majority of thermal transfer occurred as debris layers warmed during the 131-day monsoon 

season.  

 

Thermistors were present at the debris-ice interface at four sites (KH2, 4, 5 and IM14) and showed a 

more subdued diurnal cycle than Ta and Ts (Fig. 6). Mean Ti was within measurement uncertainty of 0°C 595 

at KH4 (0 ± 0.2°C), however it was warmer than expected at KH2, with a mean of 2.3 ± 1.3°C and a 

maximum of 5.0°C reached on 27 September 2014. The high Ti values recorded at KH2 are unexpected, 

as the thermistor was emplaced in the debris at the level of the ice surface, implying a maximum Ti 

value of 0°C. Possible explanations for the Ti sensor recording positive values is that uneven ice surface 

or melt-out of debris from the underlying ice could mean that ablation could shift the debris-ice 600 

interface below the sensor or that warm meltwater may be present at the interface. If ablation is 

recalculated at KH2 using the heat flux method with measured Ti rather than assuming that Ti is 0°C, 

then the Td gradient was shallower than implied by measurements made at the lowest sensor and total 

seasonal ablation was reduced from 369 mm w.e. to 279 mm w.e..  

 605 

6.2 Ablation outside the monsoon season 

The majority of ablation from glaciers in the Central Himalaya takes place during the monsoon season 

when air temperatures are high (Benn and Lehmkuhl, 2000). As the observational data and numerical 

modeling results indicate that the debris layers were frozen during the pre-monsoon and post-monsoon 

periods in 2014 (Fig. 4), we assumed that ablation during the monsoon season represented total annual 610 

ablation beneath debris layers with thicknesses equivalent to or greater than those measured here (0.3 
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m). However, Td was above 0°C during March–May at KH1 and NG1 suggesting that the ablation 

season may precede the start of the monsoon season by several months. Our data reliably cover the 

monsoon season and are less continuous outside of this period. However, δTd/δhd have a similar form 

between the summer and the monsoon season, although the monsoon season profiles are uniformly 1–615 

2°C warmer for thick debris layers indicating that most ablation occurs during the monsoon season (Fig. 

8). These results suggest that although the thermal properties of the debris vary over time, they can be 

reliably approximated using seasonal mean values for a representative period. However, the impact of 

snowstorms such as those observed in 2014 and different meteorological conditions outside of the 

monsoon season likely require more detailed consideration than was possible given the available data. 620 

As a result, the values for ablation during the monsoon season presented here probably represent most, 

but not all, of the annual mass lost from these glaciers. 

 

6.3 Ablation calculations 

6.3.1 Summary of results 625 

We applied three commonly used methods for calculating ablation beneath supraglacial debris using Ta, 

Ts and Td measured through the 131-day monsoon season at 11 sites on three debris-covered glaciers in 

the Everest region. All values are given in water equivalent (w.e.) using a density of ice of 900 kg m-3. 

Each method gave different estimates of total seasonal ablation, although all methods indicated 

decreasing ablation with increasing debris thickness (Fig. 11). Debris thicknesses between sites ranged 630 

from 0.26 m to about 2.0 m, although not all sites were considered using each method. DDFs driven by 

Ta gave the greatest estimates of ablation across all sites, ranging from 0.68 m w.e. at IM4 beneath 1.5 

m of debris to 2.67 m w.e at KH4 beneath 0.3 m debris. Downward heat flux driven by Ts gave slightly 

lower estimates of ablation ranging from 0.18 m w.e at KH1 beneath 1.5 m debris to 1.84 m w.e at 

IM14 beneath 0.26 m debris. The thermal diffusion model ranged from 0.10–0.47 m w.e. for moist 635 

debris layers with thicknesses of 1.5–0.3 m, whereas those calculated using downward heat flux were 

0.18–0.83 m w.e. for the same debris thicknesses. We used our estimates of ablation to derive an 

Østrem curve specifically for monsoon-influenced glaciers in the Himalaya. This relationship between 

debris thickness and ablation can be most simply approximated similar to the approach of Carenzo et al. 

(2016) using a power-law function; M = a * dh^b where a and b are constants. If we exclude the DDF 640 

results, then a is around 300 and b around –1 (Fig. 11). As only three ablation stake measurements from 

Imja-Lhotse Shar Glacier were available to compare with these calculations we are unable to 

demonstrate that one method is more accurate than another. Instead we discuss the value and limitations 

of each set of results. 

 645 

6.3.2 Limitations of calculations using Degree Day Factors 
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The relationship between DDFs and debris thickness (Fig. 3) was defined by fitting a power-law 

function (r2 = 0.94) to the measurements of ablation beneath debris-covered ice collected at Khumbu 

Glacier by Kayastha et al. (2000). The DDFs calculated by Kayastha et al. (2000) are likely to 

overestimate ablation compared to calculations that take into account the energy balance of the debris 650 

layer. The use of a DDF approach relies on the accurate measurement of Ta and ablation when the 

DDFs were calculated, and that the site studied and the measurement period are representative of the 

glacier through its ablation season. This is particularly challenging for debris-covered glaciers where 

ablation is highly spatially variable (Benn et al., 2012). Kayastha et al. (2000) measured Ta and ablation 

over 10 days in May/June 1999 close to Everest Base Camp at 5350 m on Khumbu Glacier. The 655 

applicability of these DDFs depends on how representative the measurements are of conditions over the 

whole monsoon season, and also how appropriate it is to extrapolate DDFs for debris thicknesses of 

0.05–0.4 m to a wider range of values. These short-term measurements made during the pre-monsoon 

season when the debris was dry are likely to overestimate ablation compared to a debris layer with a 

representative moisture content. A further limitation is that the DDFs was derived for artificially 660 

prepared debris plots that were small in area and therefore likely to experience differential ablation at 

their margins and development of surface relief. The exclusion of surface topography would remove the 

effects of solar radiation balance, lateral energy transfer and modification of debris thickness at the 

margins of each plot.  

 665 

6.3.3 Limitations of calculations using downward heat flux 

Ablation stake measurements are available for three sites on Imja-Lhotse Shar Glacier where debris was 

0.26 m, 0.33 m and 0.45 m thick, with a mean of 0.35 m. Two stakes only give minimum values as they 

completely melted out of the ice during the monsoon (Rounce et al. 2015). At IM11 and IM14, the 1-m 

long stakes completely melted out of the ice indicating ablation of at least 1 m. At IM13, ablation was 670 

0.85 m over a period of 175 days that included the monsoon season (18 May to 9 November 2014) 

equivalent to 5.7 mm w.e. day-1 and 4.9 mm w.e. day-1. For the 131-day period that we used to represent 

the monsoon, this would give total ablation of 0.75 m w.e. at IM11 and IM14, and 0.64 m w.e. at IM13. 

The results from the DDF and downward heat flux calculations give values 2–3 times greater than these 

measurements (Table 4). However, we note that Rounce et al. (2015) found a much lower thermal 675 

conductivity at IM13, which would reduce the overestimate in modelled melt at this site, because their k 

values were calculated over a longer period (2 June to 12 October) than that used here (1 June to 31 

July). The difference between these results indicates that the apparent thermal diffusivity of the debris 

varies substantially during the summer, for example due to phase changes at the start and end of the 

monsoon season. Based on the similarities between the sites in terms of climate, altitude, debris 680 

lithology and grain size discussed above, we would expect k values to be similar for each site and 

glacier over the same period of time. This method is dependent on Ts and the differences in k between 
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glaciers result from these measurements. Therefore we used a generic whole-rock k of 2.5 W m-1 °C-1 in 

Experiments 1 and 3 with the thermal diffusion model to avoid compounding the effect of the Ts 

measurements on calculated ablation. 685 

 

6.3.4 Limitations of the thermal diffusion model 

The thermal diffusion model driven by Ts, Td and properties of the debris layer including lithology, 

porosity and water content resulting from precipitation gave the lowest estimates of ablation, ranging 

from 0.38 m w.e. at KH1 to 1.04 m w.e. at KH4 for dry debris. The values for moist debris were even 690 

lower, equivalent to 33–46% of the dry values from three sites. The simulated debris moisture content 

was likely overestimated by the numerical model, as we assumed that (i) all precipitation was liquid, 

which is not supported at least for the snowstorms in 2014 when snow accumulated on top of the debris, 

and (ii) the precipitation instantly infiltrated the debris layer without any loss due to vapour fluxes at the 

surface and within the debris, which have been shown to be non-negligible (Collier et al. 2014; Evatt et 695 

al. 2015). In addition, the distribution of water and ice within moist debris layers is not prognosed by 

the model, and therefore the temperature of all such layers is constrained at the upper bound at the 

melting point if ice is present within the pore spaces of the debris. These simplifications may 

overestimate the debris water content available for re-freezing and forming ice within the debris pore 

spaces at the beginning of the monsoon period, as well as the impact of the presence of interstitial ice 700 

near the base of the debris, and therefore the strong reduction in sub-debris ablation between dry and 

moist simulations. 

 

6.4 Contribution of sub-debris ablation to glacier-wide mass balance 

Multi-temporal satellite observations of glacier topography can be used to infer mass balance where the 705 

complete coverage of glacier surfaces negates the need to consider vertical ice fluxes (e.g. Bolch et al., 

2011; King et al., 2017). We can compare observations of surface lowering in the debris-covered 

ablation areas with our sub-debris ablation values if the emergence velocities of the ice are known (cf. 

Vincent et al., 2016). Numerical modelling of ice flow through Khumbu Glacier can be used to derive a 

depth-integrated velocity field for the entire glacier. Using results from Rowan et al. (2015), the mean 710 

emergence velocity across the debris-covered section of Khumbu Glacier is estimated to be 0.50 m a-1, 

slightly lower than 0.74 m a-1 for the entire ablation area beneath the icefall. These values describe ice 

flux, so conversion to water equivalent using the same value as King et al. (2017) for the density of 

glacier ice (850 kg m-3) gives 0.45 m w.e. a-1 for the debris-covered section, similar to the value of 0.37 

m w.e. a-1 calculated by Vincent et al. (2016) for Changri Nup Glacier. Surface lowering rates observed 715 

between 2000 and 2015 were up to 1.06 ± 0.10 m a-1 at the altitudes of the ablation area of the large 

debris-covered glaciers in Everest region (Dudh Koshi catchment) and slightly higher for the lower 

ablation area of Khumbu Glacier, reaching up to 1.39 ± 0.14 m a-1 at altitudes of 5100–5200 m (King et 
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al., 2017). We assume that surface lowering values represent loss of ice rather than reduced supraglacial 

debris thickness, and compare our estimates of ablation with remote observations of glacier-wide 720 

surface lowering by King et al. (2017).  

 

For Khumbu Glacier, mean observed surface lowering for the debris-covered section was 1.14 ± 0.12 m 

a-1 between 2009 and 2015 (King et al., 2017). Combining observed surface lowering with modelled 

mean emergence flux give a total loss of ice thickness of 1.59 m a-1. Ablation calculated using the 725 

thermal diffusion model gave lower values than those observed remotely; mean surface lowering 

beneath thick, moist debris was 0.12–0.17 m a-1 and 0.56 m a-1 beneath thin, moist debris. If the debris 

layer was dry, then surface lowering would be 0.09 m a-1 if calculated using glacier-specific k of 0.98 ± 

0.1 W m-1 °C-1, and 0.35 m a-1 if calculated using a generic whole-rock k value (2.5 W m-1 °C-1). For 

Ngozumpa Glacier, mean surface lowering from King et al. (2017) for the debris-covered section was 730 

1.21 ± 0.13 m a-1 between 2010 and 2015, assuming that the emergence velocity is zero across the 

lower ablation area. Similar results are presented by Thompson et al. (2016) who measured mean 

surface lowering for the lower ablation area that includes NG1 between June 2010 and December 2012 

(19 months) of 1.8 ± 0.11 m, equivalent to 1.1 ± 0.11 m a-1, and between December 2012 and January 

2015 (12 months) of 1.3 ± 0.32 m a-1. Simulated ablation gave surface lowering beneath thick, dry 735 

debris of 0.38 m a-1 if calculated using glacier-specific k of 1.43 ± 0.14 W m-1 °C-1 or 0.74 m a-1 using 

generic whole-rock k.   

 

These results indicate that for both Khumbu and Ngozumpa Glaciers the total annual loss of mass 

beneath thick debris (0.12–0.74 m a-1) for moist and dry debris is less than observed surface lowering 740 

(1.21–1.59 m a-1). The observed level of mass loss suggests that even if a substantial proportion of the 

debris-covered area is thinner than 0.5 m, about 65% (and up to 90% if the debris is thick) of the surface 

lowering at Khumbu Glacier at ice cliffs and supraglacial ponds and by englacial melt and conduit 

collapse. Although ice cliffs occupy only a small proportion of the ablation area of each glacier, their 

occurrence is positively correlated with surface lowering (Watson et al. 2017). Remote mapping of 745 

debris thickness across Khumbu Glacier using thermal satellite imagery indicates that 73% of the debris 

layer could be sufficiently thin (less than 0.3 m thick) to make the lower figure plausible, but estimate 

that the mean thickness is 0.65 ± 1.75 m (Soncini et al., 2016). Our field measurements also suggest 

greater debris thicknesses are typical in the ablation area, with a mean of 0.84 ± 0.32 m (n = 143) and 

only 15% of the sampled points with thicknesses less than 0.3 m. If the glacier surface was not debris 750 

covered, we would expect still greater mass loss than current observations; Vincent et al. (2016) 

calculated a mass balance of –3.0 m w.e. a-1 (equivalent to surface lowering of 3.90 m a-1 if emergence 

is included) for the debris-covered section of Changri Nup Glacier by extrapolating from ablation stake 

measurements of the clean-ice section of this glacier to the elevation of the debris-covered tongue, 
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which has a similar elevation to the upper ablation area of Khumbu Glacier. These results demonstrate 755 

that thick debris layers common to glaciers in the Everest region do act to preserve the underlying ice, 

although more rapid decay occurs due to enhanced mass loss around ice cliffs and supraglacial ponds 

than would be the case for an entirely debris-covered surface. 

 

7. Conclusions 760 

We compared on-glacier air, surface and supraglacial debris temperatures from 11 sites on three 

glaciers in the Everest region of Nepal. Debris layer temperatures, and therefore the amount of sub-

debris ablation, varied during the monsoon season as air temperatures rose and fell and large volumes of 

precipitation were deposited. The monsoon occurred between 3 June and 11 October in 2014 and 

similar periods in 2015 and 2016. Estimates of monsoon season ablation for debris layers with 765 

thicknesses of 1.5–0.3 m ranged from 0.10–0.47 m w.e. using the thermal diffusion model for moist 

debris to 0.68–2.67 m w.e. using the degree day factor approach driven by measurements of air 

temperature (Ta). A calculation of downward heat flux gave intermediate values for ablation of 0.18–

1.84 m m w.e. for the 131-day monsoon season. In the absence of suitable direct validation data, these 

widely varying results illustrate that caution is required when choosing a method to estimate sub-debris 770 

ablation. The DDFs approach is site specific and relies upon the relationship between measured Ta and 

the melt rate at the calculation site to be the same as the relationship from which the DDFs were 

developed. The downward heat flux approach applied here is reliant on the quality of the debris surface 

temperature (Ts) measurements available, the validity of the assumption that all heat flux within the 

debris is conductive, and the degree to which the k value used represents the bulk conditions within the 775 

porous debris cover over the period of calculation. The thermal diffusion model as set up here is also 

dependent upon the quality of the Ts forcing data, but is able to, at least partially, account for non-

conductive processes by including the impact of likely bulk phase changes of moisture within the debris 

cover. Although it remains unclear which of these methods can provide the most robust and reliable 

method at local, glacier or regional scales, the thermal diffusion model reproduced our observations of 780 

seasonal mean debris temperatures using a generic whole-rock k value, and reproduced the results of the 

downward heat flux approach when used with glacier-specific bulk k values.  

 

We found that the seasonal debris temperature–depth profiles were strongly dependent on debris 

thickness and consistent between three different glaciers. These profiles were generally linear through 785 

debris layers at least 0.5 m thick. This observation simplifies the prediction of multiannual sub-debris 

ablation, which can therefore be estimated using a power-law relationship that is likely applicable to 

debris-covered glaciers in the monsoon-influenced Himalaya. The moist and dry thermal diffusion 

simulations and a calculation using downward heat flux gave similar results for sub-debris ablation 

across a range of debris thicknesses greater than 0.5 m, but gave a wider range of values for thin (<0.5 790 
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m) debris layers. These results demonstrate the difficulty in estimating ablation beneath thin 

supraglacial debris, and the need to investigate the thermal properties these debris layers in more detail 

to calculate ablation. Debris-covered ice represents over a third of the glacierised area in the Everest 

region and the majority of this area appears to be covered by thick supraglacial debris rather than thin, 

patchy layers. Thick supraglacial debris tends to attenuate the flux of heat to the ice surface of debris-795 

covered glaciers, and we have shown that this is predictable at a seasonal timescale. Numerical 

modelling of glacier evolution in response to climate change can apply the relationship observed here to 

improve predictions of regional multiannual glacier mass balance in future decades. However, 

comparison of our estimates of ablation with observations of glacier surface lowering indicates that sub-

debris ablation does not represent the majority of mass loss. Instead, over 65% of mass loss likely 800 

occurs where debris is thin (<0.5 m) or patchy and at the exposed faces of ice cliffs, beneath 

supraglacial ponds and englacially.  
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Table 1. Description of the data collection sites on Khumbu, Ngozumpa and Imja-Lhotse Shar 

Glaciers in the Everest region of Nepal. Debris thickness values in italics are estimated where the 1000 

debris layer was too thick to excavate to the debris-ice interface 

 
 

 

Table 2. Examples of bulk effective thermal conductivity (k) values for debris-covered glaciers in 1005 

Nepal and Europe 

 
 

 

Table 3. Division of the 2014 monsoon season into intervals based on air temperatures and 1010 

precipitation amount measured at Khumbu Glacier and the Pyramid Observatory 

 

 
 

 1015 

Site ID
Altitude 

(m)

Distance from 

terminus (km)
Aspect

Debris 

thickness 

(m)

Duration of data 

collection
Seasons measured

KH1 4935 1.4 N 1.50 10/05/14 to 12/11/14 Summer 2014

KH1 4935 1.4 N 1.50 21/11/14 to 20/10/15 Winter 2014 & Summer 2015

KH2 4958 2.5 N 0.70 13/05/14 to 13/11/14 Summer 2014

KH2 4958 2.5 N 0.70 20/10/15 to 22/09/16 Winter 2015 & Summer 2016

KH3 4954 3.7 NE 0.80 17/05/14 to 15/11/14 Summer 2014

KH4 5180 6.8 N 0.30 20/05/14 to 16/11/14 Summer 2014

KH5 4943 2.1 S 0.70 20/10/15 to 12/05/16 Winter 2015

NG1 4800 1.5 N 2.00 13/11/01 to 12/10/02 Winter 2001 & Summer 2002

NG2 4725 1.6 WSW 1.75 04/11/14 to 03/04/16 Winter 2014 , Summer 2015 and Winter 2015

IM4 5050 1.0 SW 1.50 31/05/14 to 09/11/14 Summer 2014

IM11 5050 1.0 S 0.45 31/05/14 to 09/11/14 Summer 2014

IM13 5050 1.0 NE 0.33 31/05/14 to 09/11/14 Summer 2014

IM14 5050 1.0 SE 0.26 31/05/14 to 09/11/14 Summer 2014

Glacier Country
Latitude 

(°N)

Debris 

lithology

Debris 

thickness (m)

Effective thermal 

conductivity (W m-1 ºC-1)

Assumed 

debris water 

content (%)

Measurement period Reference

Larsbreen Svalbard 78 Sedimentary 0.65 0.59 ± 0.12 Dry 9–20 July 2002 Nicholson and Benn (2006)

Larsbreen Svalbard 78 Sedimentary 0.65 1.67 ± 0.35 Wet 9–20 July 2002 Nicholson and Benn (2006)

Haut Glacier d'Arolla Switzerland 46 Granitic 0.06 1.02 ± 0.1 - 28 July–11 September 2010 Reid et al. (2012)

Miage Italy 45 Granitic 0.23 0.94 - 21 June–4 September 2005–2007 Reid and Brock (2010)

Belvedere Italy 45 Metamorphic 0.27 0.64 ± 0.07 Dry 6–10 August 2003 Nicholson and Benn (2006)

Belvedere Italy 45 Metamorphic 0.27 1.78 ± 0.19 Wet 6–10 August 2003 Nicholson and Benn (2006)

Imja-Lhotse Shar Nepal 28 Granitic 0.47 0.96 ± 0.33 Dry 15–24 September 2013 Rounce and McKinney (2014)

Imja-Lhotse Shar Nepal 28 Granitic 1.50 1.44 ± 0.14 33 2 June–12 October 2014 Rounce et al. (2015)

Imja-Lhotse Shar Nepal 28 Granitic 0.45 1.62 ± 0.16 33 2 June–12 October 2014 Rounce et al. (2015)

Imja-Lhotse Shar Nepal 28 Granitic 0.33 0.47 ± 0.04 33 2 June–12 October 2014 Rounce et al. (2015)

Ngozumpa Nepal 27 Granitic 2.00 1.36 ± 0.14 0 Summer (JJA) Nicholson and Benn (2012)

Ngozumpa Nepal 27 Granitic 2.00 1.00 ± 0.10 0 Winter (DJF) Nicholson and Benn (2012)

Ngozumpa Nepal 27 Granitic 2.00 1.42 ± 0.14 10 Summer (JJA) Nicholson and Benn (2012)

Ngozumpa Nepal 27 Granitic 2.00 0.99 ± 0.09 10 Winter (DJF) Nicholson and Benn (2012)

Ngozumpa Nepal 27 Granitic 2.00 1.55 ± 0.15 20 Summer (JJA) Nicholson and Benn (2012)

Ngozumpa Nepal 27 Granitic 2.00 1.04 ± 0.10 20 Winter (DJF) Nicholson and Benn (2012)

Khumbu Nepal 27 Granitic 0.40 0.85 ± 0.20 Dry 19 May–3 June 1999 Conway and Rasmussen (2000)

Khumbu Nepal 27 Granitic 2.50 1.28 ± 0.15 Dry 19 May–3 June 1999 Conway and Rasmussen (2000)

Interval Date
Day of Year 

(inclusive)

Duration 

(days)
Characteristics

Pre-monsoon 25 May to 2 June 145–153 9 Low air temperatures, high precipitation and snowstorms

Early monsoon 3 June to 15 July 154–196 43 Rising air temperatures, lower and more variable precipitation

Middle monsoon 16 July to 25 September 197–268 72 High air temperatures, precipitation occurs on most days

Late monsoon 26 September to 11 October 269–284 16 Falling air temperatures, low precipitation

Post-monsoon 12 October to 19 October 285–292 8 Low air temperatures, high precipitation and snowstorms
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Table 4. Thermal properties of the debris layer at Khumbu, Ngozumpa and Imja Glaciers, and 

ablation calculated for each site using the DDFs and downward heat flux methods discussed in the 

text. Debris thickness values in italics are estimated where the debris layer was too thick to excavate 

to the debris-ice interface 

 1020 

 
 

 

Table 5. Results from the thermal diffusion model using a generic whole-rock k value and glacier-

specific bulk k values for dry and moist debris layers 1025 

 

 
  

Site Year
Debris 

thickness (m)

Ablation from 

stake 

measurements 

(mm w.e.)

Glacier-

specific 

bulk k  (W 

m-1 ºC -1)

Summer Winter Summer Winter Summer Winter

Total PDD 

during 

monsoon 

season (ºC)

DDF (mm w.e. 

ºC -1 day -1)

Total 

ablation 

(mm w.e.)

Mean daily 

Ts during 

the 

monsoon 

season

Downward 

energy 

flux to ice 

(W m-2)

Total 

ablation 

(mm 

w.e.)

KH1 2014 1.50 - 0.98 ± 0.1 –2.6 1.3 7.1 –5.3 - - 524 2.73 1433 8.8 5.7 216

KH1 2015 1.50 - 0.98 ± 0.1 –2.7 - 8.8 - - - 505 2.73 1381 7.5 4.9 184

KH2 2014 0.70 - 0.98 ± 0.1 –5.8 - 5.6 - 1.7 - 486 4.24 2063 7.0 9.8 369

KH2 2016 0.70 - - - –1.4 - –1.9 - –3.0 - - - - - -

KH3 2014 0.80 - - - - - - - - - - - - - -

KH4 2014 0.30 - 0.98 ± 0.1 –16.7 - 5.0 - –0.2 - 386 6.92 2672 6.8 22.2 836

KH5 2015 0.70 - - - –0.4 - -3.4 - –3.0 - - - - - -

NG1 2002 2.00 - 1.43 ± 0.14 –4.5 2.0 9.2 - - - 436 2.32 1010 8.4 6.0 226

NG2 2015 1.80 - 1.43 ± 0.14 –2.9 0.3 5.9 –2.8 1.0 –2.4 436 2.30 1003 7.0 5.6 209

IM4 2014 1.50 - 1.98 ± 0.2 –5.2 - 8.2 –3.6 - - 291 2.73 796 10.6 14.0 527

IM11 2014 0.45 >1000 1.98 ± 0.2 –16.2 - 5.9 - - - 291 5.48 1594 7.6 33.4 1259

IM13 2014 0.33 850 1.98 ± 0.2 –21.4 - 5.2 - - - 291 6.55 1906 7.8 46.8 1762

IM14 2014 0.26 >1000 1.98 ± 0.2 –18.6 - 5.1 - - - 291 7.52 2188 6.4 48.7 1835

Ablation calculated using 

downward heat flux
δTd/δhd ( ºC m -1) Mean Ts Mean Ti  Ablation calculated using DDFs

Site Year
Debris 

thickness (m)

Glacier-specific 

bulk  k  (W m -1 ºC -

1)

Experiment 1: using 

whole-rock value for 

k  of 2.5 W m -1 C -1

Experiment 2. 

using glacier-

specific bulk k

Experiment 3. 

with a moist 

debris layer

KH1 2014 1.50 0.98 ± 0.1 - - 103

KH1 2015 1.50 0.98 ± 0.1 380 99 125

KH2 2014 0.70 0.98 ± 0.1 387 - 145

KH4 2014 0.30 0.98 ± 0.1 1036 - 474

NG1 2002 2.00 1.43 ± 0.14 627 325 -

Ablation calculated using the thermal diffusion model 

(kg m-2)
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 1030 
Figure 1. Location map of the Everest region showing the sites where debris temperatures were 

measured on Ngozumpa, Khumbu and Imja-Lhotse Shar Glaciers. Glacier outlines are taken from 

the Randolph Glacier Inventory (v6.0; RGI Consortium, 2017), imagery is from Landsat bands 7, 5 

and 4 in 2015. Inset shows the location of the main figure 

 1035 
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Figure 2. Photographs of the debris profiles measured at each site on Khumbu Glacier, showing an 

overview of the site and the measured debris profile in detail during excavation before thermistors 

were emplaced and the debris was returned to the original position. Note that although the debris is 1040 

coarse at the surface, the subsurface profiles often had a finer grain size distribution. Debris at KH4 

was more angular and contained a greater proportion of schist clasts compared to the sites closer to 

the terminus on Khumbu Glacier which were predominately granitic clasts 

KH2; May 2014KH1; May 2014 KH3; May 2014 KH4; May 2014

KH2 detail; May 2014KH1 detail; May 2014 KH4 detail; May 2014

KH2 detail; Oct 2015 KH5 detail; Oct 2015

KH1; Oct 2015

KH2; Oct 2015

KH5; Oct 2015
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 1045 

Figure 3: The relationship between supraglacial debris thickness and ablation of the underlying ice. 

(a) Schematic diagram of the Østrem curve describing the relationship between ablation beneath a 

debris layer and debris thickness, (b) Østrem curves derived from degree-day factors measured from 

field observations of three debris-covered glaciers; Belvedere Glacier, Italy (Nicholson and Benn, 

2006), Khumbu Glacier, Nepal (Kayastha et al., 2000) and Koxkar Glacier, Tien Shan (Juen et al., 1050 

2014) 
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Figure 4. Air and debris temperatures (Ta and Td) measured at each site, showing mean daily Ta from 

each site on Khumbu Glacier and mean daily Ta and daily precipitation amount measured at the 1055 

Pyramid Observatory (rain plus snow as water equivalent). Mean daily Ta from KH1 in 2015, KH2 in 

2016 and NG1 in 2002. Daily mean Td isotherms for the debris layer during the monsoon season at 

all three glaciers for the site and year given in the figure. All debris thicknesses are plotted to the 

same scale and the colourbar scale for Td is the same in each case. A dashed line indicates where the 

profile reached the debris–ice interface. A grey shaded bar indicates where the profile collapsed 1060 

during the measurement period. Measurements made at KH5 are not shown, as due to collapse of the 

debris surface data were only recorded during winter 
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 1065 

Figure 5. Complete timeseries of Ta from Khumbu Glacier and the Pyramid Observatory measured in 

2014 at 30 minute intervals (blue line) and mean daily values (black line), and Ts (red line) at two 

sites with the periods identified as the pre-monsoon, monsoon and post-monsoon. Gaps in the 

Pyramid timeseries indicate where data were not available. The complete timeseries of Ti measured 

at sites KH2, KH4 and IM14 are compared. Note that the profile collapsed at KH2 after 6 June and 1070 

as a result Ti values are higher than expected 
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Figure 6. Timeseries of mean daily Ta, Ts and Ti through the 2014 monsoon season at KH2 and KH4. 1075 

The diurnal ranges are shown by the shaded background and compared in the lowermost plot 

 

 

 
Figure 7. Three-day examples of Ta, Ts, and Td to the debris-ice interface at KH2 through 0.7 m of 1080 

debris and KH4 through 0.3 m of debris for the early (8–10 June) middle (29–31 July) and late (6–8 

October) monsoon season in 2014. Note the difference in lag between Ts and Td between the thick 

and thin debris layers  
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Figure 8. Seasonal δTd/δhd for Khumbu, Ngozumpa and Imja-Lhotse Shar Glaciers for (a) summer (1 

May to 31 October) and the monsoon season (3 June to 12 October; dashed lines) and (b) winter (1 

November to 30 April). Where the profile reached the debris–ice interface this is indicated by a 1090 

circle. The standard deviations of Td are not shown but for summer measurements these values range 

from 0.8°C (KH1) to 2.4°C (IM14) and for winter from 0.1°C (KH5) to 0.6°C (NG1) 
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 1095 
 

Figure 9. Results of the thermal diffusion model experiments for KH1, KH2 and KH4 in 2014, 

showing simulated Td, simulated sub-debris ablation, the difference in debris temperature resulting 

from the use of moist or dry debris, and the calculated ice and water contained within the pore space 

of the debris 1100 
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Figure 10. Results from thermal diffusion model experiments showing simulated δTd/δhd through 

moist and dry debris compared to observations at KH1 (2014 and 2015), KH2, KH4 and NG1 using 

a whole-rock k value of 2.5 W m-1 °C-1 and glacier-specific bulk k values (keff) calculated locally for 1105 

KH1 (0.977 W m-1 °C-1) and NG1 (1.43 W m-1 °C-1) (dashed lines), and the simulated cumulative 

ablation at each site assuming either a moist or a dry debris layer. Note that where thermistors were 

not installed at the debris–ice interface at KH1 and NG1 the debris thickness simulated here is a 

minimum and Td is assumed to be zero at this minimum thickness, such that the model gives an 

underestimate of ablation for these sites 1110 
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Figure 11. Østrem curves for monsoon-influenced glaciers in the Himalaya, showing the best-fit 

power-law functions for sub-debris ablation calculated using DDFs, downward heat flux and the 

thermal diffusion model with dry (Experiment 1) and moist (Experiment 3) debris for 11 sites on 1115 

three debris-covered glaciers during the monsoon season (3 June to 11 October)  
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