234 research outputs found

    Increased levels of type VIII collagen in human brain tumours compared to normal brain tissue and non-neoplastic cerebral disorders.

    Get PDF
    The expression of type VIII collagen was examined in the normal and diseased human brain. Focal immunoreactivity was seen in histologically abnormal vessels of all four angiomas and 40 of 52 brain tumours (gliomas, meningiomas and schwannomas). An extended staining pattern, as well as a punctate distribution, was frequently observed in affected vessels. Staining was not apparent in nine normal brains and in 15 pathologic brains showing various cerebrovascular abnormalities, including Alzheimer's, Leigh's and Wernicke's diseases. Immunoblotting of glioblastomas revealed two bands at 56 kD and 67 kD which were also present at low levels in normal frontal cortex. The extracellular distribution of type VIII collagen was different from that of the other collagen types which have been described in brain and resembles patterns of expression described for certain tissues during mammalian embryogenesis (Kapoor et al., 1988). Our results provide additional evidence for the participation of type VIII collagen in some types of angiogenesis

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Perspectives on Cognitive Phenotypes and Models of Vascular Disease

    Get PDF
    Clinical investigations have established that vascular-Associated medical conditions are significant risk factors for various kinds of dementia. And yet, we are unable to associate certain types of vascular deficiencies with specific cognitive impairments. The reasons for this are many, not the least of which are that most vascular disorders are multi-factorial and the development of vascular dementia in humans is often a multi-year or multi-decade progression. To better study vascular disease and its underlying causes, the National Heart, Lung, and Blood Institute of the National Institutes of Health has invested considerable resources in the development of animal models that recapitulate various aspects of human vascular disease. Many of these models, mainly in the mouse, are based on genetic mutations, frequently using single-gene mutations to examine the role of specific proteins in vascular function. These models could serve as useful tools for understanding the association of specific vascular signaling pathways with specific neurological and cognitive impairments related to dementia. To advance the state of the vascular dementia field and improve the information sharing between the vascular biology and neurobehavioral research communities, National Heart, Lung, and Blood Institute convened a workshop to bring in scientists from these knowledge domains to discuss the potential utility of establishing a comprehensive phenotypic cognitive assessment of a selected set of existing mouse models, representative of the spectrum of vascular disorders, with particular attention focused on age, sex, and rigor and reproducibility. The workshop highlighted the potential of associating well-characterized vascular disease models, with validated cognitive outcomes, that can be used to link specific vascular signaling pathways with specific cognitive and neurobehavioral deficits

    Mutation in utp15 Disrupts Vascular Patterning in a p53-Dependent Manner in Zebrafish Embryos

    Get PDF
    Angiogenesis is the process by which the highly branched and functional vasculature arises from the major vessels, providing developing tissues with nutrients, oxygen, and removing metabolic waste. During embryogenesis, vascular patterning is dependent on a tightly regulated balance between pro- and anti-angiogenic signals, and failure of angiogenesis leads to embryonic lethality. Using the zebrafish as a model organism, we sought to identify genes that influence normal vascular patterning.In a forward genetic screen, we identified mutant LA1908, which manifests massive apoptosis during early embryogenesis, abnormal expression of several markers of arterial-venous specification, delayed angiogenic sprouting of the intersegmental vessels (ISV), and malformation of the caudal vein plexus (CVP), indicating a critical role for LA1908 in cell survival and angiogenesis. Genetic mapping and sequencing identified a G to A transition in the splice site preceding exon 11 of utp15 in LA1908 mutant embryos. Overexpression of wild type utp15 mRNA suppresses all observed mutant phenotypes, demonstrating a causative relationship between utp15 and LA1908. Furthermore, we found that injecting morpholino oligonucleotides inhibiting p53 translation prevents cell death and rescues the vascular abnormalities, indicating that p53 is downstream of Utp15 deficiency in mediating the LA1908 phenotypes.Taken together, our data demonstrate an early embryonic effect of Utp15 deficiency on cell survival and the normal patterning of the vasculature and highlight an anti-angiogenic role of p53 in developing embryos

    A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis

    Get PDF
    During angiogenesis, Rho GTPases influence endothelial cell migration and cell-cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell-cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4. DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis

    FRAGMATIC: A randomised phase III clinical trial investigating the effect of fragmin® added to standard therapy in patients with lung cancer

    Get PDF
    Background Venous thromboembolism (VTE) occurs when blood clots in the leg, pelvic or other deep vein (deep vein thrombosis) with or without transport of the thrombus into the pulmonary arterial circulation (pulmonary embolus). VTE is common in patients with cancer and is increased by surgery, chemotherapy, radiotherapy and disease progression. Low molecular weight heparin (LMWH) is routinely used to treat VTE and some evidence suggests that LMWH may also have an anticancer effect, by reduction in the incidence of metastases. The FRAGMATIC trial will assess the effect of adding dalteparin (FRAGMIN), a type of LMWH, to standard treatment for patients with lung cancer. Methods/Design The study design is a randomised multicentre phase III trial comparing standard treatment and standard treatment plus daily LMWH for 24 weeks in patients with lung cancer. Patients eligible for this study must have histopathological or cytological diagnosis of primary bronchial carcinoma (small cell or non-small cell) within 6 weeks of randomisation, be 18 or older, and must be willing and able to self-administer 5000 IU dalteparin by daily subcutaneous injection or have it administered to themselves or by a carer for 24 weeks. A total of 2200 patients will be recruited from all over the UK over a 3 year period and followed up for a minimum of 1 year after randomisation. Patients will be randomised to one of the two treatment groups in a 1:1 ratio, standard treatment or standard treatment plus dalteparin. The primary outcome measure of the trial is overall survival. The secondary outcome measures include venous thrombotic event (VTE) free survival, serious adverse events (SAEs), metastasis-free survival, toxicity, quality of life (QoL), levels of breathlessness, anxiety and depression, cost effectiveness and cost utility. Trial registration Current Controlled Trials ISRCTN8081276

    The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold

    Get PDF
    The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation
    corecore