25 research outputs found

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Hydro-ionothermal synthesis of lanthanide-organic frameworks with 1,4-phenylenebis(methylene)diphosphonate

    Get PDF
    A synthetic approach combining hydrothermal and ionothermal (eutectic mixture of choline chloride and malonic acid) procedures is proposed that allowed the isolation of the first lanthanide-organic frameworks with residues of 1,4-phenylenebis(methylene)- diphosphonic acid (H4pmd), [Ln(Hpmd)(H2O)] (where Ln3+ ) Ce3+ and Pr3+), exhibiting an unprecedented trinodal topology with 3- and 8-connected nodes. The structural details were unveiled from single-crystal X-ray diffraction and the materials were characterized using standard techniques.FCT - POCI-PPCDT/QUI/58377/2004FEDER - POCIGrant - SFRH/BPD/9309/200

    Enthalpy of formation of ye’elimite and ternesite

    Get PDF
    Calcium sulfoaluminate clinkers containing ye’elimite (Ca4Al6O12(SO4)) and ternesite (Ca5(SiO4)2SO4) are being widely investigated as components of calcium sulfoaluminate cement clinkers. These may become low energy replacements for Portland cement. Conditional thermodynamic data for ye’elimite and ternesite (enthalpy of formation) have been determined experimentally using a combination of techniques: isothermal conduction calorimetry, X-ray powder diffraction and thermogravimetric analysis. The enthalpies of formation of ye’elimite and ternesite at 25 °C were determined to be − 8523 and − 5993 kJ mol−1, respectively

    High-temperature synthesis, single-crystal X-ray and neutron powder diffraction, and materials properties of Sr(3)Ln(10)Si(18)Al(12)O(18)N(36) (Ln = Ce, Pr, Nd)-novel sialons with an ordered distribution of Si, Al, O, and N

    No full text
    The novel oxonitridoaluminosilicates (sialons) Sr(3)Ln(10)Si(18)Al(12)O(18)N(36) (Ln = Ce, Pr, Nd) were obtained by the reaction of the respective lanthanide metals with Si(NH)(2), SrCO3, and AlN using a radiofrequency furnace at temperatures between 1550-1650 degrees C. The crystal structures of the isotypic sialons were determined by single-crystal X-ray investigations (Sr3Ce10Si18Al12O18N36: I (4) over bar 3m, Z = 2, a = 1338.2(2) pm, R1 = 0.0333; Sr3Pr10Si18Al12O18N36: a = 1334.54(6) pm, R1 = 0.0296; Sr3Nd10Si18Al12O18N36: a = 1332.85(6) pm, R1 = 0.0271) and in the case of Sr3Pr10Si18Al12O18N36 with powder neutron diffraction as well. The three-dimensional sialon network is built up by SiON3, SiN4, and AlON3 tetrahedra. Besides the bridging O and N atoms of the sialon network there are isolated O2- which are tetrahedrally coordinated by Sr and Ln. The crystallographic differentiation of Si/Al and O/N seemed to be possible by a careful evaluation of the single-crystal X-ray diffraction data combined with lattice energy calculations using the MAPLE concept (Madelung Part of Lattice Energy). In the case of Sr3Pr10Si18Al12O18N36 the differentiation of O and N and the proposed ordering was completely confirmed by powder neutron diffraction

    X ray diffraction investigation on Cu2ZnSiSe4 single and polycrystalline crystals

    No full text
    Cu2ZnSiSe4 belong to the adamantine family of quaternary chalcogenides crystallizing in the wurtzstannite structure. Recent ab initio calculations show, that the lowest energy structure of Cu2ZnSiSe4 is the wurtzkesterite type structure in contrast to wurtzstannite type, usually obtained in experiments. To clarify this issue a structural study on single crystals of Cu2ZnSiSe4 was performed for the first time. The structural characterization of the single crystals was carried out by X ray diffraction at two different temperatures room temperature and 150 K. The XRD data analysis shows, that Cu2ZnSiSe4 single crystals adopt the orthorhombic wurtzstannite type structure space group Pmn21 and lattice parameters a 7.809 , b 6.778 , c 6.447 at 150 K, and lattice parameters a 7.821 , b 6.734 , c 6.453 at room temperature were derived. The structural parameters were confirmed for the polycrystalline Cu2ZnSiSe4 bulk sampl

    Electronic components and systems in Europe. The future impact of ENIAC and ARTEMIS

    No full text
    This study investigates the opportunities to improve the effectiveness and impact of Europea
    corecore