1,128 research outputs found

    Sunderland Software City: The Impact of a Collaborative Project to Develop the Software Industry within the North East of England

    Get PDF
    This paper uses a case study approach to evaluate the impact of a collaborative initiative within the North East of England which sets out to grow and sustain a software industry, based on the strengths of regional players. The project Sunderland Software City has the ambitious aim of developing the people, the infrastructure and the business and enterprise culture to create and sustain a software industry. This paper focuses upon the impact of the project, and presents some lessons learned to date

    The swath pattern of tomato disease control with an air-blast sprayer

    Get PDF

    Surface scattering properties estimated from modeling airborne multiple emission angle reflectance data

    Get PDF
    Here, researchers apply the Hapke function to airborne bidirectional reflectance data collected over three terrestrial surfaces. The objectives of the study were to test the range of natural surfaces that the Hapke model fits and to evaluate model parameters in terms of known surface properties. The data used are multispectral and multiple emission angle data collected during the Geologic Remote Sensing Field Experiment (GRSFE) over a mud-cracked playa, an artificially roughened playa, and a basalt cobble strewn playa at Lunar Lake Playa in Nevada. Airborne remote sensing data and associated field measurements were acquired at the same time. The airborne data were acquired by the Advanced Solid State Array Spectroradiometer (ASAS) instrument, a 29-spectral band imaging system. ASAS reflectance data for a cobble-strewn surface and an artificially rough playa surface on Lunar Lake Playa can be explained with the Hanke model. The cobble and rough playa sites are distinguishable by a single scattering albedo, which is controlled by material composition; by the roughness parameter, which appears to be controlled by the surface texture and particle size; and the symmetry factor of the single particle phase function, which is controlled by particle size and shape. A smooth playa surface consisting of compacted, fine-grained particles has reflectance variations that are also distinct from either the cobble site or rough playa site. The smooth playa appears to behave more like a Lambertian surface that cannot be modeled with the Hapke function

    From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling

    Full text link
    [EN] Tissue-level biomechanical properties and function derive from underlying cell signaling, which regulates mass deposition, organization, and removal. Here, we couple two existing modeling frameworks to capture associated multiscale interactions¿one for vessel-level growth and remodeling and one for cell-level signaling¿and illustrate utility by simulating aortic remodeling. At the vessel level, we employ a constrained mixture model describing turnover of individual wall constituents (elastin, intramural cells, and collagen), which has proven useful in predicting diverse adaptations as well as disease progression using phenomenological constitutive relations. Nevertheless, we now seek an improved mechanistic understanding of these processes; we replace phenomenological relations in the mixture model with a logic-based signaling model, which yields a system of ordinary differential equations predicting changes in collagen synthesis, matrix metalloproteinases, and cell proliferation in response to altered intramural stress, wall shear stress, and exogenous angiotensin II. This coupled approach promises improved understanding of the role of cell signaling in achieving tissue homeostasis and allows us to model feedback between vessel mechanics and cell signaling. We verify our model predictions against data from the hypertensive murine infrarenal abdominal aorta as well as results from validated phenomenological models, and consider effects of noisy signaling and heterogeneous cell populations.This work was supported by Grants from the US NIH (R01 HL105297, P01 HL134605, R01 HL139796, U01 HL142518, R01 HL146723)Irons, L.; Latorre, M.; Humphrey, JD. (2021). From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Annals of Biomedical Engineering. 48(7):1701-1715. https://doi.org/10.1007/s10439-020-02713-81701171548

    Control of foliage diseases and insects of potatoes

    Get PDF

    Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network

    Get PDF
    BACKGROUND It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems. RESULTS Using Boolean network models as an exemplar, we present a new technique to identify subsystems, based on their dynamical properties. The main part of the method depends only on the stable dynamics (attractors) of the system, thus requiring no prior knowledge of the underlying network. However, knowledge of the logical relationships between the network components can be used to describe how each subsystem is regulated. To demonstrate its applicability to genetic regulatory systems, we apply the method to a model of the Drosophila segment polarity network, providing a detailed breakdown of the system. CONCLUSION We have designed a technique for decomposing any set of discrete-state, discrete-time attractors into subsystems. Having a suitable mathematical model also allows us to describe how each subsystem is regulated and how robust each subsystem is against perturbations. However, since the subsystems are found directly from the attractors, a mathematical model or underlying network topology is not necessarily required to identify them, potentially allowing the method to be applied directly to experimental expression data
    corecore