130 research outputs found

    Genome-Wide Expression Analysis of a Spinal Muscular Atrophy Model: Towards Discovery of New Drug Targets

    Get PDF
    Spinal Muscular Atrophy is a recessive genetic disease and affects lower motor neurones and muscle tissue. A single gene is disrupted in SMA: SMN1 activity is abolished but a second copy of the gene (SMN2) provides limited activity. While the SMN protein has been shown to function in the assembly of RNA-protein complexes, it is unclear how the overall reduction in SMN activity specifically results in the neuromuscular phenotypes. Similar to humans, reduced smn activity in the fly causes earliest phenotypes in neuromuscular tissues. To uncover the effects of reduced SMN activity, we have studied gene expression in control and diseased fly tissues using whole genome micro-arrays. A number of gene expression changes are recovered and independently validated. Identified genes show trends in their predicted function: several are consistent with the function of SMN, in addition some uncover novel pathways. This and subsequent genetic analysis in the fly indicates some of the identified genes could be taken for further studies as potential drug targets for SMA and other neuromuscular disorders

    Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study

    Get PDF
    Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal α-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; glycyl-tRNA synthetase (GARS), dynactin 1 (DCTN1), small heat shock 27 kDa protein 1 (HSPB1), small heat shock 22 kDa protein 8 (HSPB8), Berardinelli-Seip congenital lipodystrophy (BSCL2) and senataxin (SETX). In addition a mutation in the (VAMP)-associated protein B and C (VAPB) was found in several Brazilian families with complex and atypical forms of autosomal dominantly inherited motor neuron disease. We have investigated the distribution of mutations in these seven genes in a cohort of 112 familial and isolated patients with a diagnosis of distal motor neuropathy and found nine different disease-causing mutations in HSPB8, HSPB1, BSCL2 and SETX in 17 patients of whom 10 have been previously reported. No mutations were found in GARS, DCTN1 and VAPB. The phenotypic features of patients with mutations in HSPB8, HSPB1, BSCL2 and SETX fit within the distal HMN classification, with only one exception; a C-terminal HSPB1-mutation was associated with upper motor neuron signs. Furthermore, we provide evidence for a genetic mosaicism in transmitting an HSPB1 mutation. This study, performed in a large cohort of familial and isolated distal HMN patients, clearly confirms the genetic and phenotypic heterogeneity of distal HMN and provides a basis for the development of algorithms for diagnostic mutation screening in this group of disorder

    Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections

    Get PDF
    BACKGROUND: The antimicrobial activity and Minimal Inhibitory Concentration (MIC) of the extracts of Bidens pilosa L., Bixa orellana L., Cecropia peltata L., Cinchona officinalis L., Gliricidia sepium H.B. & K, Jacaranda mimosifolia D.Don, Justicia secunda Vahl., Piper pulchrum C.DC, P. paniculata L. and Spilanthes americana Hieron were evaluated against five bacteria (Staphylococcus aureus, Streptococcus β hemolític, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli), and one yeast (Candida albicans). These plants are used in Colombian folk medicine to treat infections of microbial origin. METHODS: Plants were collected by farmers and traditional healers. The ethanol, hexane and water extracts were obtained by standard methods. The antimicrobial activity was found by using a modified agar well diffusion method. All microorganisms were obtained from the American Type Culture Collection (ATCC). MIC was determined in the plant extracts that showed some efficacy against the tested microorganisms. Gentamycin sulfate (1.0 μg/ml), clindamycin (0.3 μg/ml) and nystatin (1.0 μg/ml) were used as positive controls. RESULTS: The water extracts of Bidens pilosa L., Jacaranda mimosifolia D.Don, and Piper pulchrum C.DC showed a higher activity against Bacillus cereus and Escherichia coli than gentamycin sulfate. Similarly, the ethanol extracts of all species were active against Staphylococcus aureus except for Justicia secunda. Furthermore, Bixa orellana L, Justicia secunda Vahl. and Piper pulchrum C.DC presented the lowest MICs against Escherichia coli (0.8, 0.6 and 0.6 μg/ml, respectively) compared to gentamycin sulfate (0.9 8g/ml). Likewise, Justicia secunda and Piper pulchrum C.DC showed an analogous MIC against Candida albicans (0.5 and 0.6 μg/ml, respectively) compared to nystatin (0.6 μg/ml). Bixa orellana L, exhibited a better MIC against Bacillus cereus (0.2 μg/ml) than gentamycin sulfate (0.5 μg/ml). CONCLUSION: This in vitro study corroborated the antimicrobial activity of the selected plants used in folkloric medicine. All these plants were effective against three or more of the pathogenic microorganisms. However, they were ineffective against Streptococcus β hemolytic and Pseudomonas aeruginosa. Their medicinal use in infections associated with these two species is not recommended. This study also showed that Bixa orellana L, Justicia secunda Vahl. and Piper pulchrum C.DC could be potential sources of new antimicrobial agents

    The Mutational Spectrum in a Cohort of Charcot-Marie-Tooth Disease Type 2 among the Han Chinese in Taiwan

    Get PDF
    BACKGROUND: Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese. METHODOLOGY AND PRINCIPAL FINDINGS: Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort), including p.N71Y in AARS (2.8%), p.T164A in HSPB1 (2.8%), and p.[H256R]+[R282H] in GDAP1 (2.8%) in one patient each, three NEFL mutations in six patients (16.7%) and four MFN2 mutations in five patients (13.9%). The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del). Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%). CONCLUSIONS AND SIGNIFICANCE: This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese

    L-Plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages

    Get PDF
    Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages

    Evaluation of fluorescence in situ hybridisation (FISH) for the detection of fungi directly from blood cultures and cerebrospinal fluid from patients with suspected invasive mycoses

    Get PDF
    The aim of this study was to evaluate the diagnostic performance of in-house FISH (fluorescence in situ hybridisation) procedures for the direct identification of invasive fungal infections in blood cultures and cerebrospinal fluid (CSF) samples and to compare these FISH results with those obtained using traditional microbiological techniques and PCR targeting of the ITS1 region of the rRNA gene. In total, 112 CSF samples and 30 positive blood cultures were investigated by microscopic examination, culture, PCR-RFLP and FISH. The sensitivity of FISH for fungal infections in CSF proved to be slightly better than that of conventional microscopy (India ink) under the experimental conditions, detecting 48 (instead of 46) infections in 112 samples. The discriminatory powers of traditional microbiology, PCR-RFLP and FISH for fungal bloodstream infections were equivalent, with the detection of 14 fungal infections in 30 samples. However, the mean times to diagnosis after the detection of microbial growth by automated blood culture systems were 5 hours, 20 hours and 6 days for FISH, PCR-RFLP and traditional microbiology, respectively. The results demonstrate that FISH is a valuable tool for the identification of invasive mycoses that can be implemented in the diagnostic routine of hospital laboratories. © 2015 Da Silva et al

    Molecular genetics of distal hereditary motor neuropathies

    No full text
    corecore