243 research outputs found

    Trapping x‐ray radiation damage from homolytic Se–C bond cleavage in BnSeSeBn crystals (Bn=benzyl, CH2C6H5)

    Get PDF
    Irradiation of dibenzyl diselenide BnSeSeBn with X-ray or UV-light cleaves the Se-C and the Se-Se bonds, inducing stable and metastable radical states. They are inevitably important to all natural and life sciences. Structural changes due to X-ray-induced Se-C bond-cleavage could be pin-pointed in various high-resolution X-ray diffraction experiments for the first time. Extended DFT methods were applied to characterize the solid-state structure and support the refinement of the observed residuals as contributions from the BnSeSe • radical species. The X-ray or UV-irradiated crystalline samples of BnSeSeBn were characterized by solid-state EPR. This paper provides insight that in the course of X-ray structure analysis of selenium compounds not only organo-selenide radicals like RSe • may occur, but also organo diselenide BnSeSe • radicals and organic radicals R • are generated, particularly important to know in structural biology

    Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration

    Get PDF
    We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1−xBix epitaxial layers exhibiting Biinduced (p-type) longitudinal-optical-plasmon coupled (LOPC) modes for 0.018≤x≤0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Γ) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Γ) phonon (ALO/ALOPC →0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5 × 1017 cm−3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi

    Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells

    Get PDF
    BACKGROUND: Embryo implantation requires that uterine epithelium develops competence to bind trophoblast to its apical (free) poles. This essential element of uterine receptivity seems to depend on a destabilisation of the apico-basal polarity of endometrial epithelium. Accordingly, a reorganisation of the actin cytoskeleton regulated by the small GTPase RhoA plays an important role in human uterine epithelial RL95-2 cells for binding of human trophoblastoid JAR cells. We now obtained new insight into trophoblast binding using human uterine epithelial Ishikawa cells. METHODS: Polarity of Ishikawa cells was investigated by electron microscopy, apical adhesiveness was tested by adhesion assay. Analyses of subcellular distribution of filamentous actin (F-actin) and RhoA in apical and basal cell poles were performed by confocal laser scanning microscopy (CLSM) with and without binding of JAR spheroids as well as with and without inhibition of small Rho GTPases by Clostridium difficile toxin A (toxin A). In the latter case, subcellular distribution of RhoA was additionally investigated by Western blotting. RESULTS: Ishikawa cells express apical adhesiveness for JAR spheroids and moderate apico-basal polarity. Without contact to JAR spheroids, significantly higher signalling intensities of F-actin and RhoA were found at the basal as compared to the apical poles in Ishikawa cells. RhoA was equally distributed between the membrane fraction and the cytosol fraction. Levels of F-actin and RhoA signals became equalised in the apical and basal regions upon contact to JAR spheroids. After inhibition of Rho GTPases, Ishikawa cells remained adhesive for JAR spheroids, the gradient of fluorescence signals of F-actin and RhoA was maintained while the amount of RhoA was reduced in the cytosolic fraction with a comparable increase in the membrane fraction. CONCLUSION: Ishikawa cells respond to JAR contact as well as to treatment with toxin A with rearrangement of F-actin and small GTPase RhoA but seem to be able to modify signalling pathways in a way not elucidated so far in endometrial cells. This ability may be linked to the degree of polar organisation observed in Ishikawa cells indicating an essential role of cell phenotype modification in apical adhesiveness of uterine epithelium for trophoblast in vivo

    Automatic identification of relevant chemical compounds from patents

    Get PDF
    In commercial research and development projects, public disclosure of new chemical compounds often takes place in patents. Only a small proportion of these compounds are published in journals, usually a few years after the patent. Patent authorities make available the patents but do not provide systematic continuous chemical annotations. Content databases such as Elsevier’s Reaxys provide such services mostly based on manual excerptions, which are time-consuming and costly. Automatic text-mining approaches help overcome some of the limitations of the manual process. Different text-mining approaches exist to extract chemical entities from patents. The majority of them have been developed using sub-sections of patent documents and focus on mentions of compounds. Less attention has been given to relevancy of a compound in a patent. Relevancy of a compound to a patent is based on the patent’s context. A relevant compound plays a major role within a patent. Identification of relevant compounds reduces the size of the extracted data and improves the usefulness of patent resources (e.g. supports identifying the main compounds). Annotators of databases like Reaxys only annotate relevant compounds. In this study, we design an automated system that extracts chemical entities from patents and classifies their relevance. The goldstandard set contained 18 789 chemical entity annotations. Of these, 10% were relevant compounds, 88% were irrelevant and 2% were equivocal. Our compound recognition system was based on proprietary tools. The performance (F-score) of the system on compound recognition was 84% on the development set and 86% on the test set. The relevancy classification system had an F-score of 86% on the development set and 82% on the test set. Our system can extract chemical compounds from patents and classify their relevance with high performance. This enables the extension of the Reaxys database by means of automation

    A Proteomic and Cellular Analysis of Uropods in the Pathogen Entamoeba histolytica

    Get PDF
    Exposure of Entamoeba histolytica to specific ligands induces cell polarization via the activation of signalling pathways and cytoskeletal elements. The process leads to formation of a protruding pseudopod at the front of the cell and a retracting uropod at the rear. In the present study, we show that the uropod forms during the exposure of trophozoites to serum isolated from humans suffering of amoebiasis. To investigate uropod assembly, we used LC-MS/MS technology to identify protein components in isolated uropod fractions. The galactose/N-acetylgalactosamine lectin, the immunodominant antigen M17 (which is specifically recognized by serum from amoeba-infected persons) and a few other cells adhesion-related molecules were primarily involved. Actin-rich cytoskeleton components, GTPases from the Rac and Rab families, filamin, α-actinin and a newly identified ezrin-moesin-radixin protein were the main factors found to potentially interact with capped receptors. A set of specific cysteine proteases and a serine protease were enriched in isolated uropod fractions. However, biological assays indicated that cysteine proteases are not involved in uropod formation in E. histolytica, a fact in contrast to the situation in human motile immune cells. The surface proteins identified here are testable biomarkers which may be either recognized by the immune system and/or released into the circulation during amoebiasis
    corecore