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Abstract

We propose a continuous rate and power allocation algorithm for multiuser downlink multiple-input multiple-output
orthogonal frequency-division multiplexing (MIMO-OFDM) systems with coordinated multipoint (CoMP) transmission
that guarantees to satisfy individual rate target across all users. The optimization problem is formulated as a total
transmit power minimization problem subject to per-user rate targets and per-antenna power constraints across
multiple cooperating base stations. While the per-antenna power constraint leads to a more complex optimization
problem, it is a practical consideration that limits the average transmit antenna power and helps to control the
resulting high peak powers in OFDM. Our proposed algorithm uses successive convex approximation (SCA) to
transform the non-convex power minimization problem and dynamically allocate power to co-channel user terminals.
We prove that the transformed power minimization problem is convex and that our proposed SCA algorithm
converges to a solution. The proposed algorithm is compared with two alternative approaches: (1) iterative
waterfilling (IWF) and (2) zero-forcing beamforming (ZFB) with semi-orthogonal user selection. Simulation results
highlight that the SCA algorithm outperforms IWF and ZFB in both medium- and low-interference environments.
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1 Introduction
Intercell interference (ICI) is a limiting factor on the
throughput performance of downlink multiuser multiple-
input multiple-output (MIMO) orthogonal frequency-
division multiplexing (OFDM) systems. User terminals
(UTs) located at the cell edge are particularly susceptible
to interference from base stations (BSs) that are operat-
ing in proximity within the same frequency. In this paper,
we consider the use of coordinated multipoint (CoMP)
transmission with joint processing to mitigate the effect
of ICI, which is a key technology in next-generation net-
works [1–3]. Joint processing is accomplished by sharing
channel state information and user data between multiple
BSs via a high-speed low-delay optical backhaul. In doing
so, ICI can be mitigated by transmitting user data to a UT
simultaneously from all the cooperating BSs [4, 5].
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In addition to mitigating ICI using joint processing,
resource allocation algorithms can be employed in con-
junction with CoMP to achieve substantial improvements
in multiuser MIMO system performance [6–8]. In [6],
the system performance is improved by joint power allo-
cation and linear precoding for multiuser MIMO sys-
tems with CoMP under per-antenna power constraints.
In [7], the received signal-to-interference-plus-noise ratio
for individual user is enhanced by adaptive nonlinear
precoding and power allocation for CoMP systems with
multiuser MIMO under total BS and per-BS power con-
straints. In [8], the joint linear precoding and power
allocation for multiuser MIMO systems with CoMP are
solved by convex optimization techniques under per-BS
power constraints to improve the system performance.
The resource allocation problem for downlink MIMO-

OFDM systems has been studied extensively for the
single-user case [9, 10]. However, the optimization
problem for multiuser MIMO-OFDM systems becomes
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mathematically challenging as the problem becomes non-
convex in the presence of interference. As a result, obtain-
ing a globally optimal solution is difficult to achieve.
Dirty paper coding (DPC) was first proposed in [11]
to achieve broadcast channel capacity for single-cell
MIMO systems, and it was extended to solve the non-
convex sum-rate maximization problem for multicell
systems [12]. The DPC employs a nonlinear precod-
ing scheme which presubtracts interference to achieve
channel capacity. However, DPC requires high compu-
tational demands in successive encodings and decod-
ings which makes it difficult to be implemented in
practice.
Suboptimal strategies, such as iterative waterfilling

(IWF) [13] and zero-forcing beamforming (ZFB) [14],
have been proposed to solve the non-convex problem.
The IWF approach in [13] treats interference as a chan-
nel noise component which transforms the optimization
problem into a convex one. As a result, an equilibrium
can be achieved by performing a competitive waterfilling-
based algorithm iteratively across all UTs. The ZFB in
[14] eliminates interference by employing zero-forcing
beamformers. This allows powers to be allocated in
interference-free OFDM subchannels via the waterfilling
strategy. However, the performance of ZFB is limited by
the number of transmit antennas and the mutual orthog-
onality of the UT channel gains. As a result, a semi-
orthogonal user selection is proposed in [15] to select a
subgroup of UTs that results in the lowest mutual inter-
ference.
In this paper, we introduce a new resource allocation

algorithm for multiuser downlink MIMO-OFDM systems
that guarantees to satisfy a minimum rate constraint for
each UT. The algorithm aims to minimize total trans-
mit power subject to per-UT rate targets and per-antenna
power constraints. Similar optimization problem has been
considered in [16] for multi-cell OFDMA networks and

for MIMO broadcast channels in [17]. We focus on a
centralized implementation of the proposed algorithm for
joint processing strategy in a multicell scenario. In doing
so, we assume that perfect knowledge of all channel gains
and user messages are shared via an optical backhaul
which interconnects all the cooperating BSs to a central
processor as shown in Fig. 1. The execution of the pro-
posed algorithm is accomplished by allocating powers to
co-channel UTs in the presence of multiuser interference
(MUI) formulated as an optimization problem. As a result,
the optimization problem is non-convex which is diffi-
cult to solve. To overcome this, we adopt the successive
convex approximation (SCA)-based technique in [18] to
transform the problem into a convex one. In [18], a SCA
technique is developed for solving a non-convex dynamic
spectrum management in the digital subscriber line tech-
nology with crosstalk. The algorithm attempts to jointly
optimize desired signal powers and interference powers
through an iterative convex approximation procedure.
The same technique has been adopted to solve resource
allocation problems for both single-cell MIMO-OFDMA
in [19] and multicell OFDMA in [20–22] wireless net-
works. The SCA approach has been demonstrated in [18]
to outperform the IWF algorithm. The SCA approach
allows us to obtain locally optimal solutions using the
dual Lagrange decomposition technique with the aid of
subgradient-based methods [23].
The main contributions of the paper are summarized as

follows:

• We establish an optimization approach for
minimizing total transmit power while achieving
per-UT rate targets. We perform eigenbeamforming
on each MIMO-OFDM subchannel, with the aid of
singular value decomposition, to obtain precoding
and postprocessing matrices for the BS and UT,
respectively.

Fig. 1 A downlink MIMO-OFDM system withM = 2 CoMP base stations transmitting to K = 2 user terminals and LT = LR = 2
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• We derive an iterative algorithm, which is based on
the SCA approach in [18], to solve the non-convex
power minimization problem in which a minimum
rate target is achieved for each UT. A
convex-equivalent optimization problem is obtained
using the proposed iterative algorithm. In doing so,
we provide a convexity proof for the transformed
problem and we show that the proposed algorithm
can converge to a unique solution.

• We consider the per-antenna average transmit power
constraint, which limits the average transmit antenna
power. As a result, the high peak power of each
transmit antenna can be indirectly constrained. This
ensures that the peak power is limited at an acceptable
level which does not exceed the dynamic range of a
high-powered amplifier, thereby causing nonlinear
transmission effects. The issue of high peak powers is
often overlooked in resource allocation problems
which only consider a total power constraint.

• We compare our proposed algorithm with two other
suboptimal algorithms IWF [24] and ZFB with semi-
orthogonal user selection [15]. We adopt an empirical
path loss model, the COST-231 Hata empirical model
[25], to model various interference environments.

A much more complicated problem would be the joint
adaptive beamforming design and power allocation with
a minimum mean square error receiver used to suppress
the inter-user interference. While this problem tends to
be intractable, our proposed algorithm could be applied
on top of a coordinated beamforming method across
all cooperating base stations. Furthermore, the proposed
SCA algorithm is suited to fixed-wireless applications in
sparsely populated regions that require high UT data rates
over large network areas. A prime example is the provision
of wireless broadband in rural areas where the chan-
nel gains are quasi-stationary [26]. Our algorithm is also
suitable for implementation in small cells with low user
mobility.
The paper is organized as follows. The system model is

introduced in Section 2. The formulation of total transmit
power minimization problem is presented in Section 3.
The fundamental of the SCA-based algorithm is outlined
in Section 4. This section also includes the convexity
proof for the convex-approximated optimization problem
transformed by the proposed SCA algorithm and the con-
vergence of the proposed algorithm. Section 5 presents
the numerical results of the optimization problem. Con-
cluding remarks are presented in Section 6.

2 Systemmodel
In this paper, we consider a downlink multiuser MIMO-
OFDM system with N subchannels. The system consists
of M cooperating BSs each with LT transmit antennas,

as shown in Fig. 1. These BSs are interconnected by a
high-speed optical backhaul for exchanging CSI and user
data for joint processing. The optical backhaul is then
connected to a central processor for executing a central-
ized implementation of our proposed power allocation
algorithm, which is based on the CSI of each OFDM sub-
channel from the cooperating BSs. There are K UT, each
equipped with LR receive antennas. The spatial degree
of freedom for the MIMO-OFDM system is defined as
L ≤ min(MLT , LR). We assume that perfect CSI knowl-
edge between transmit-receive antenna pairs is known to
both BSs and UTs. The CoMP configuration with joint
processing operation can be envisioned as a multiuser
MIMO system with distributed transmit antenna. The
channel gains of these distributed transmit antennas con-
sist various path loss profiles depending on the relative
distances between the distributed transmit and receive
antennas.
Assuming signals received at UTs from all cooperat-

ing BSs arrive at the same, the discrete-time complex
baseband received signal in the nth MIMO-OFDM sub-
channel, denoted as yn, for all K UTs after postprocessing
is modeled as

yn = UH
n HnVnxn + wn, (1)

where Hn �
[
H1

n · · ·HK
n
]T is the complex channel gain

matrix and each matrix Hk
n ∈ C

LR×MLT is indepen-
dently and identically distributed (i.i.d.) random variables,
each of which is drawn from a zero mean and unit vari-
ance circularly symmetric complex Gaussian distribution
CN (0, 1) in the nth subchannel for the kth UT. The term
in theHk

n matrix can be interpreted as

hki,j[n]= nth OFDM subchannel gain from Tx j to

Rx i in k th UT.

We note that these subchannel gains include path
attenuations, as well as both small- and large-scale fad-
ing components. The transmitted signals is denoted as
xn ∈ C

KMLT×1 and the complex Gaussian noise is
denoted as wn ∈ C

KLR×1 with variance σ 2
n. The matrices

UH
n = diag

(
U1
n
H · · ·UK

n
H) and Vn = [

V1
n · · ·VK

n
]
are the

postprocessing and precodingmatrices, respectively. Each
terms Uk

n
H and Vk

n is obtained from the singular value
decomposition (SVD) of the MIMO-OFDM subchannel
matrixHk

n, which are given by

Hk
n = Uk

n�
k
nVk

n
H, (2)

where Uk
n ∈ C

LR×LR and Vk
n ∈ C

MLT×MLT are the uni-
tary transmit precoding and receiver shaping matrices,
respectively, and�k

n ∈ R
L×MLT is the diagonalmatrix with

non-negative singular values
√

γ k
n,l, l = 1, . . . , L as the
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gain for the (n, l)th spatial subchannel [25]. The operator
(·)H represents the Hermitian transpose.
The SVD, known as the eigenbeamforming [27], is

employed to decouple each MIMO-OFDM subchannel
into L independent parallel spatial subchannels with the
singular values as the subchannel gains. This is accom-
plished by applying the linear transformation Vk

n to the
transmitted symbol vector and applying the linear trans-
formation Uk

n
H to the received symbol vector. The result-

ing cascaded channel can be written as

Uk
n
HHk

nVk
n = Uk

n
HUk

n�
k
nVk

n
HVk

n = �k
n. (3)

As such, a N-subchannel MIMO-OFDM system can be
decomposed into a total of N × L spatial subchannels and
with full CSI knowledge, intelligent power, and bit allo-
cation algorithms can be employed to optimize system
performance across all the spatial subchannels. The appli-
cation of the eigenbeamforming does not eliminate the
inter-user interference for cochannel users (like ZFB). The
inter-user interference is caused by themismatch between
the jth UT transmit precoding matrix and all the UT
receiver shaping matrices.
Before we formulate the optimization problem, we for-

mally define the following two signal and power domains,
which will be used throughout the paper.

Definition 1. The antenna domain consists of powers
that are physically transmitted by the antennas at the BSs.

Definition 2. The spatial domain consists of effective
powers and signals sent in the spatial subchannels result-
ing from SVD.

We also define the following terms:

R̃k
n,l = spatial rate in (n, l)th spatial subchannel for

UT k
P̃kn,l = spatial power in (n, l)th spatial subchannel for

UT k
Pn,m = transmit power in subchannel n from antenna

m,

where a spatial subchannel pair is denoted by an accent
with subscripts (n, l) and a subchannel-antenna pair is
denoted by subscripts (n,m).
In the proposed power and rate allocation algorithm, we

consider a continuous bit-loading scheme with a desirable
rate region on the (n, l)th spatial subchannel for kth UT,
in bits/second/Hertz, as follows:

R̃k
n,l

(
P̃n
)

= log2
[
1 + SINRk

n,l

(
P̃n
)]

, (4)

where P̃n =
[
P̃1
n . . . P̃K

n

]
is the L × K spatial power

matrix for the nth OFDM subchannel and each P̃K
n =

[
P̃Kn,1 . . . P̃Kn,L

]T is the L × 1 spatial power vector for the
Kth UT in the nth subchannel. The noise variance in the
(n, l)th spatial subchannel for the kth UT is expressed as
σ k
n,l

2, and we assume the noise variances are constant and
equal among all the spatial subchannels. The signal-to-
interference-plus-noise ratio (SINR) for the kth UT on the
(n, l)th spatial subchannel is defined as follows:

SINRk
n,l

(
P̃n
)

= Gk,k
n,l P̃

k
n,l∑

j �=k
Gk,j
n (l, :)P̃j

n + σ k
n,l

2 , ∀ l = 1, . . . , L.

(5)

The term Gk,k
n,l is the (n, l)th spatial subchannel gain

obtained from the SVD of the channel matrix. The inter-
user interference channel gain matrix Gk,j

n for the nth
OFDM subchannel between the kth UT and the jth UT is
defined as follows:

Gk,j
n (x, y) =

∣∣∣Uk
n(x, :)Hk

nV
j
n
H
(:, y)

∣∣∣2, ∀ x, y = 1, . . . , L.

(6)

The physical interpretation of the inter-user interfer-
ence gain Gk,j

n can be explained as the interference func-
tion from the jth UT projecting onto the receiving direc-
tion of the kth UT. This gives in a weighted sum of the
transmitted signal in all L spatial subchannels as a result
of a conjugate mismatch between the transmit beamform-
ing weights Vj

n and the postprocessing of Uk
n. In the next

section, we present the optimization problem that satisfy
per-UT rate targets for given per-antenna transmit power
constraints.

3 Powerminimization problem formulation
The resource allocation problem in MIMO-OFDM sys-
tems can be formulated into a power minimization (PM)
problem. The PM problem aims to minimize the trans-
mit power while satisfying rate targets for each UT and
transmit power constraints. For conventional rate adap-
tive problems, in which the objective is to maximize the
total system throughput subject to a total transmit power
constraint, it is intuitive that by allocating powers to the
UT who has the best channel condition will maximize the
overall system throughput for a given transmit power con-
straint. Those UTs with less favorable channel conditions
will receive very little or even no data throughput as there
is no rate constraint on the individual UT. In contrast, the
PM problem guarantees per-UT rate targets to be satis-
fied while minimizing total transmit power for a given set
of per-antenna power constraints.
We seek to minimize the total transmit power of a

downlink multiuser MIMO-OFDM system subject to per-
UT target rates and per-antenna power constraints. This
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problem can be expressedmathematically as the following
optimization problem:

minimize∀Pn,m ≥ 0

MLT∑
m=1

N∑
n=1

Pn,m

subject to
N∑

n=1

L∑
l=1

R̃k
n,l

(
P̃n, σ k

n,l
2, Gk,k

n,l , G
k,j
n
)

≥ Rk
T

(7)
N∑

n=1
Pn,m ≤ Pmmax, ∀m = 1, . . . ,MLT ,

where Rk
T is the desirable rate target for the kth UT. These

rate targets must be feasible, which means there must
exist a feasible power allocation such that the per-user
rate target is satisfied and the per-antenna power con-
straints not being violated. To enhance readability, we now
write R̃k

n,l without explicitly stating it being a function of
P̃n, σ k

n,l
2, Gk,k

n,l and Gk,j
n .

We simplify the PM problem in (7) by converting the
objective function and per-antenna power constraints into
the spatial domain. In doing so, we derive an important
relationship between spatial average powers and antenna
average powers. Assuming the data symbols sent in each
spatial subchannel are uncorrelated, which is expected,
with zero mean and normalized to unit variance, it can
be shown that, for a given subchannel n, the relation-
ship between spatial and antenna powers is given by the
following lemma.

Lemma1. The relationship between antenna powersPk
n

and spatial powers P̃k
n is given by Pk

n = Ak
nP̃k

n, where
Ak
n(m, l) = ∣∣Vk

n(m, l)
∣∣2.

Proof. The symbol vectors, x̃kn ∈ C
MLT×1, sent in each

spatial subchannel undergo a linear transformation with
the precoding matrix Vk

n before transmission, which is
given by xkn = Vk

nx̃kn ∈ C
MLT×1. Furthermore, we assume

these sent symbols are uncorrelated (as is expected) with
zero mean and unit variance. Therefore, the relation-
ship between antenna average powers and spatial average
powers can be derived as follows:

Pk
n = Tr

{
E

[
xknxkn

H]}
= Tr

{
E

[
Vk
nx̃

k
nx̃

k
n
HVk

n
H]}

=

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

vk1,1 · · · vk1,MLT
...

. . .
...

vkMLT ,1 · · · vkMLT ,MLT

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

2

E

[∣∣∣x̃kn∣∣∣2
]

=
∣∣∣Vk

n

∣∣∣2 P̃k
n, (8)

where Tr(·) denoted as the trace of a matrix and |·|2
denoted as the squared magnitude operation.

The term Ak
n refers to the power gain transformation

from spatial powers to antenna powers in the nth sub-
channel for the kth UT and is equal to the element-
by-element squared-magnitude of the transmit precoding
matrix, Vk

n.
This relationship allows us to transform antenna pow-

ers into spatial powers which result in effective rates
in each spatial subchannel. Moreover, the per-antenna
power constraint prevents unbalanced power allocation
among all the cooperating BSs. In the case of the total
average transmit power constraint, the majority of the
power would be allocated to BSs with better channel con-
ditions. This makes the inherent peak-to-average-power
ratio (PAPR) problem in the OFDM more problematic
as the resulting peak transmit power at the transmit
antenna may exceed the dynamic range of high-powered
amplifiers (HAP) during transmission. As a result, the
transmitted signal will experience nonlinear transmission
effects, which compromises signal quality and, conse-
quently, affecting the overall system performance. With
per-antenna power constraints in place, the average trans-
mit power of each antenna is constrained to a threshold in
which the resulting high PAPR would not be problematic
to cause irreversible nonlinear transmission effects.
The primal optimization problem in (7) is a non-convex

optimization problem which the globally optimal solution
is difficult to obtain. This can be shown by rewriting the
per-UT rate constraint in (7) in the following expression:

R̃k
n,l = log2

⎡
⎣Gk,k

n,l P̃
k
n,l +

K∑
j �=k

Gk,j
n (l, :)P̃j

n + σ k
n,l

2

⎤
⎦

− log2

⎡
⎣ K∑

j �=k
Gk,j
n (l, :)P̃j

n + σ k
n,l

2

⎤
⎦ .

(9)

From the expression in (9), it can be seen that it is of
the form of difference of concave functions (DoCF) of
P̃n. Obtaining globally optimal solutions for optimization
problems involve with DoCF is difficult and NP-hard [28].

4 The proposed SCA algorithm
To overcome the DoCF structure of the rate constraints
in (7), we adopt the SCA algorithm in [18] to solve our
non-convex optimization problems. The SCA algorithm
converts a non-convex optimization problem into a con-
vex one by an iterative convex approximation technique.
The convex approximation is based on the following lower
bound:

log2 (1 + SINR) ≥ α log2 SINR + β , (10)
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where α and β are the convex approximation constants,
which dictate the accuracy of this lower bound approx-
imation on the Pareto boundary of the achievable rate
region. The approximation constants are defined as the
following:

α = SINR
1 + SINR

and (11a)

β = log2(1 + SINR) − SINR
1 + SINR

log2 SINR. (11b)

The lower bound is improved successively by evaluat-
ing and updating α and β according to (11a) and (11b)
at each iteration, respectively, based on the new value x̄.
A locally optimal solution will be obtained as the lower
bound converges to the actual achievable rate curve [18].
We make use of the lower bound in (10) to the per-UT

rate targets and express the antenna powers in term of
the spatial powers using Lemma 1. This results in the fol-
lowing power minimization problem, which only involves
variables in the spatial domain:

minimize
∀ P̃n � 0

MLT∑
m=1

K∑
k=1

N∑
n=1

Ak
n(m, :)P̃k

n

subject to
N∑

n=1

L∑
l=1

αk
n,l log2

[
SINRk

n,l

(
P̃n
)]

(12)

+ βk
n,l ≥ Rk

T
K∑

k=1

N∑
n=1

Ak
n(m, :)P̃k

n ≤ Pmmax.

In order to solve this optimization problem efficiently,
we adopt the Lagrange dual decomposition method [23].
First, we define the Lagrangian by converting the primal
problem in (12) into an unconstrained dual optimization
problem with the substitution of P̃n = eP̂n , which is given
by

LPM
{
P̂n,μ,λ

}
=

MLT∑
m=1

K∑
k=1

N∑
n=1

Ak
n(m, :)eP̂

k
n

+
MLT∑
m=1

λm

[ K∑
k=1

N∑
n=1

Ak
n(m, :)eP̂

k
n − Pmmax

]

−
K∑

k=1
μk

⎧⎨
⎩

N∑
n=1

L∑
l=1

βk
n,l − Rk

T + αk
n,l

ln 2

⎧⎨
⎩lnGk,k

n,l + P̂kn,l

− ln

⎡
⎣ K∑

j �=k
Gk,j
n (l, :)eP̂

j
n + σ k

n,l
2

⎤
⎦
⎫⎬
⎭
⎫⎬
⎭ , (13)

where λ = [λ1 . . . λMLT
]
is the 1×MLT vector of Lagrange

multipliers associated with each transmit antenna and

μ = [μ1 . . . μK ] is the 1 × K vector of Lagrange mul-
tipliers associated with each UT rate target. The proof
for the convexity of the per-UT rate target is provided in
Lemma 2.

Lemma 2. The per-UT rate target in (12) is a concave
function with the substitution of P̃n = eP̂n .

Proof. The per-UT rate target in (12) with the substitu-
tion of P̃n = eP̂n is given by

R̃k
n,l

(
eP̂n
)

= αk
n,l log2

[
SINRk

n,l

(
eP̂n
)]

+ βk
n,l

= αk
n,l

ln 2

⎧⎨
⎩lnGk,k

n,l + P̂kn,l

− ln

⎡
⎣ K∑

j �=k
Gk,j
n (l, :)eP̂

j
n + σ k

n,l
2

⎤
⎦
⎫⎬
⎭+ βk

n,l.

(14)

To show that the rate target in (14) is a concave function
in P̂n, we need to show that the Hessian of R̃k

n,l(P̂n) is in
fact a positive semi-definite matrix i.e., ∇2R̃k

n,l(P̂n) ≥ 0.
The Hessian of R̃k

n,l(P̂n) is given by

∇2R̃k
n,l(P̂n) = 1

X2

[
Xdiag(x) − xxT

]
, (15)

where the vector x is defined as

x=
[
Gk,1
n (l, :)eP̂

1
n , . . . ,Gk,k−1

n (l, :)eP̂
k−1
n ,Gk,k+1

n (l, :)eP̂
k+1
n , . . . ,

Gk,K
n (l, :)eP̂

K
n
]
,

(16)

and the term X is defined as

X =
K−1∑
j=1

xj + σ k
n,l

2. (17)

For every z ∈ R
K−1, we have L � zT∇2R̃k

n,l

(
P̂n
)
z ≥ 0,

which is given by

X2L = zT
[
Xdiag(x) − xxT

]
z

=
⎛
⎝K−1∑

j=1
zj2xj

⎞
⎠
⎛
⎝K−1∑

j=1
xj + σ k

n,l
2

⎞
⎠−

⎛
⎝K−1∑

j=1
zjxj

⎞
⎠

2

≥ 0, (18)

and since σ k
n,l

2 is non-negative and therefore, the Cauchy-
Schwarz inequality holds [23].
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The dual problem is then given by

maximize
μ,λ� 0

d(μ,λ), (19)

where the Lagrange dual objective function, denoted as
d(μ,λ), is defined as

d(μ,λ) = min
P̂n � 0

LPM
{
P̂n,μ,λ

}
. (20)

The optimal solution of the dual problem is given by

D∗ = d(μ∗,λ∗), (21)

where μ∗ and λ∗ are the optimal Lagrange multipliers.
From (13) and (20), d(μ,λ) is a convex function as it is
a pointwise minimum of a series of weighted affine func-
tions of μ and λ [23]. Therefore, the optimal Lagrange
multipliers of μ∗ and λ∗, in which maximize d(μ,λ), can
be obtained by using the standard convex optimization
techniques [23]. The corresponding optimal value of the
dual problem D∗ is the lower bound for the optimal value
of the approximated primal problem in (12), denoted as
P∗, given by

P∗ ≥ D∗. (22)

Since the SCA technique is employed to transform the
original optimization problem in (7) into a convex one
and the feasible set has a non-empty interior, the duality
gap between P∗ and D∗ is in fact zero. This is due to the
fact that any finite rate target is achievable for any given
arbitrary large transmit powers. As a result, the approx-
imated optimization problem in (12) satisfies the Slater’s
condition which implies that the strong duality condition
holds [23]. Therefore, P∗ can be found by first minimizing
the Lagrangian LPM in (13) to evaluate the dual objec-
tive function d(μ,λ) in (20) and then maximizing d(μ,λ)

over all non-negative values of μ and λ. Furthermore, the
Lagrangian in (13) can be simplified intoNK-independent
subproblems using standard dual decomposition method
for a given μ and λ, which is given by

LPM (μ,λ) =
N∑

n=1

K∑
k=1

ğkn (μ,λ)−
MLT∑
m=1

λmPmmax+
K∑

k=1
μkRk

T,

(23)

where ğkn is given by

ğkn (μ,λ) = minimize
P̂k
n�0

MLT∑
m=1

Ak
n(m, :)eP̂

k
n (1 + λm)

−
L∑

l=1

μkα
k
n,l

ln 2

⎧⎨
⎩lnGk,k

n,l + P̂kn,l − ln

⎡
⎣ K∑

j �=k
Gk,j
n (l, :)eP̂

j
n

+ σ k
n,l

2

⎤
⎦+ βn,l ln 2

αk
n,l

⎫⎬
⎭ . (24)

This indicates that the dual problem can be solved by
optimizing N-independent dual subproblems, each for
ğkn (μ,λ) , ∀ k = 1, . . . ,K . As a result, the overall imple-
mentation cost can be reduced significantly if the same
procedure is executed repeatedly for solving each sub-
problem, or alternatively, K parallel processors can be
adopted for solving N dual subproblems simultaneously
to improve the convergence time of the algorithm.
For the nth OFDM subchannel of the kth UT, the mini-

mization in (24) over P̂k
n is a convex optimization problem.

Therefore, the optimal value P̂k
n
∗ must satisfy the follow-

ing Karush-Kuhn-Tucker (KKT) necessary conditions [23]
simultaneously, which are given by

1 − ln 2Ak
n(m, :)eP̂k

n
∗
(1 + λm)

μkα
k
n,l

−

∑
j �=k

Gk,j
n (l, :)eP̂

j
n

∑
j �=k

Gk,j
n (l, :)eP̂

j
n + σ k

n,l
2 = 0, ∀ k, n, l

λm

[ K∑
k=1

N∑
n=1

Ak
n(m, :)eP̂

k
n
∗ − Pmmax

]
= 0, ∀m

μk

{
Rk
T −

N∑
n=1

L∑
l=1

αk
n,l log2

[
SINRk

n,l

(
eP̂

k
n
∗)]+ βk

n,l

}
= 0, ∀ k

λm ≥ 0, ∀m

μk ≥ 0, ∀ k

(25)

From the stationarity of the KKT conditions in (25), the
optimal power allocation P̃kn,l can be obtained by substi-
tuting P̂n = ln P̃n with fixed λ and μ, which results in

P̃kn,l = μkα
k
n,l

ln 2 (1 + λ)Ak
n(:, l) + ∑

j �=k
Gj,k
n (l, :)αj

nμj
SINRj

n,l

(
P̃n
)

Gj,j
n,l P̃

j
n,l

,

(26)

where 1 is the 1 × MLT vector of ones and α
j
n =[

α
j
n,1 . . . α

j
n,L

]T
is the L×1 convex approximation constant

vector for the nth OFDM subchannel of the jth UT. We
note that the term Gj,k

n (l, :) quantifies the impact of allo-
cating P̃kn,l to the kth UT on all other UTs, which results
in an altruistic approach of allocating powers to UTs that
have the minimal mutual interference. This differs from
the egoistic approach of IWF bymaximizing the signal-to-
noise ratio without regard to resultingmutual interference
to all UTs.
The power allocation strategy in (26) is a standard inter-

ference function which is guaranteed to coverage to a
unique solution [29]. To demonstrate this, we apply Yates’
definition of standard interference function in [29] to (26)
which is introduced in the following definition.
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Definition 3. An interference function I(p) is standard
if for all p � 0 and the following properties are satisfied.

• Positivity: I(p) > 0
• Monotonicity: If p � p′ , then I(p) ≥ I(p′

)

• Scalability: For all θ > 1, θ I(p) > I(θ p)

Lemma 3. The power allocation strategy in (26) is a
standard interference function [18].

Proof. We rewrite the power allocation in (26) as

Ik
n,l(P̃) = μkα

k
n,l

ln 2 (1 + λ)Ak
n(:, l) + ∑

j �=k

Gj,k
n (l,:)αj

nμj

Gk,j
n (l,:)P̃j

n+σ k
n,l

2

.

(27)

To show the power allocation in (27) is unique and it can
converge to a locally optimal solution, we apply Yates’ def-
inition of standard interference function in Definition 3.

• Positivity: This follows from the fact that each term
in Ik

n,l(P̃) in (27) is non-negative.
• Monotonicity: Suppose P̃ ≥ P̃′ , the monotonicity

property follows from

Ik
n,l(P̃) = μkα

k
n,l

ln 2 (1 + λ)Ak
n(:, l) + ∑

j �=k

Gj,k
n (l,:)αj

nμj

Gk,j
n (l,:)P̃j

n+σ k
n,l

2

≥ μkα
k
n,l

ln 2 (1 + λ)Ak
n(:, l) + ∑

j �=k

Gj,k
n (l,:)αj

nμj

Gk,j
n (l,:)P̃j

n
′
+σ k

n,l
2

= Ik
n,l(P̃

′
) (28)

• Scalability: Suppose P̃ = θ P̃′ for θ > 1, the scalability
property follows from

θ Ik
n,l(P̃) = μkα

k
n,l

1
θ
ln 2 (1 + λ)Ak

n(:, l) + 1
θ

∑
j �=k

Gj,k
n (l,:)αj

nμj

Gk,j
n (l,:)P̃j

n+σ k
n,l

2

>
μkα

k
n,l

ln 2 (1 + λ)Ak
n(:, l) + ∑

j �=k

Gj,k
n (l,:)αj

nμj

Gk,j
n (l,:)θ P̃j

n
′
+σ k

n,l
2

= Ik
n,l(θ P̃

′
) (29)

The final step is to find μ∗ and λ∗ that maximize d(μ,λ)

over all μ � 0 and λ � 0. This is accomplished by
a gradient descent method [23] which is given by the
following:

λm
[s+1] =

[
λm

[s] + ν

( K∑
k=1

N∑
n=1

Ak
n(m, :)P̃k

n
[s+1] − Pmmax

)]+

(30)

μk
[s+1] =

[
μk

[s] + ε

(
Rk
T −

N∑
n=1

L∑
l=1

R̃k
n,l

[s+1]
)]+

, (31)

respectively, for some fixed P̃k
n, where ε and ν are step

sizes for each iteration, and s is the iteration number. The
updated Lagrange multipliers μ[s+1] and λ[s+1] are then
substituted back into (26) to obtain the new power allo-
cation P̃k

n
[s+1], and the resulting rate allocation R̃k

n,l
[s+1]

is obtained from P̃k
n
[s+1] using (4). The iterative proce-

dure terminates when the duality gap between the primal
and dual objective function approaches to zero. The PM-
SCA algorithm is outlined in Algorithm 1. We initialize
the algorithmwith a high-SINR approximation with α = 1
and β = 0 [18]. Before we present numerical results
in next section, we introduce IWF and ZFB with semi-
orthogonal user selection, which we used to compare the
performance of our proposed algorithm.

4.1 IWF
In IWF, the power allocation for each MIMO-OFDM
subchannel is performed by assuming that the inter-user
interference is constant and treating it as a part of chan-
nel noise. As a result, the original nonconvex optimization
problem is transformed into a convex one. An equilib-
rium is achieved by performing the waterfilling solution
iteratively across all the UTs in the system. In numerical
simulations, we first perform a SVD on individual MIMO-
OFDM subchannel to obtain the individual subchannel
gains. These subchannel gains are then used to perform

Algorithm 1 PM-SCA algorithm

1: Initialize s = 1, αk
n
[1] = 1, βk

n
[1] = 0, P̃[1] = 0, R̃[1] =

0, λ[1] = 1 and μ[1] = 0.1
2: while

∣∣P[s] − d
(
λ[s],μ[s])∣∣ ≤ stopping criterion do

3: Evaluate P̃kn,l
[s+1] using (26) for given λ[s] and μ[s]

4: Evaluate R̃k
n,l

[s+1] using (4) based on P̃kn,l
[s+1]

5: Update αk
n
[s+1] and βk

n
[s+1] using (11a) and (11b),

respectively, at x̄ = SINRk
n

(
P̃n

[s+1])
6: Compute the primal objective P[s] in (12)
7: Compute the dual objective d

(
λ[s],μ[s]) in (20)

8: Update λ[s+1] andμ[s+1] using (30) and (31), respec-
tively

9: Increment s
10: end while
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the power allocation, which is based on the iterative
waterfilling algorithm across all the UTs.

4.2 ZFB with semi-orthogonal user selection
In ZFB, orthogonal beamformers are used to eliminate
the inter-user interference for co-channel UTs. This trans-
forms the original nonconvex optimization problem into
a convex one, and the waterfilling algorithm is performed
across MIMO-OFDM subchannels to obtain a suboptimal
solution. However, an efficient user selection algorithm is
needed for finding co-channel UTs with less mutual inter-
ference in order to maximize the system performance, in
particular, when the number of UTs is large. Therefore,
a semi-orthogonal user selection is introduced for effec-
tively finding near-orthogonal co-channel UTs to occupy
the limited number of zero-forcing beamformers, which is
governed by the number of transmit antennas.

5 Simulation results and discussion
In this section, we present the numerical results to eval-
uate our proposed algorithm against IWF and ZFB with
semi-orthogonal user selection. We consider a downlink
fixed-wirelessMIMO-OFDM systemwithN = 32 OFDM
subchannels and M = 3 BSs where each BS is equipped
with LT = 2 transmit antennas. All the cooperating
BSs are d km separated from each other. These BSs are
assumed to be interconnected by an optical backhaul at
which channel gains and user data are shared between
cooperating BSs for joint processing. The proposed algo-
rithm is executed centrally by a central processor which is
also connected to BSs via the backhaul.We focus onK = 5
UTs in the simulation, and each UT is equipped with LR =
2 receive antennas. As shown in Fig. 2, the UTs are ran-
domly distributed in a virtual radius of r = 100 m which
is located between the two cooperating BSs to simulate
a cell-edge environment. The COST-231 Hata empirical
model [25] is used for predicting the path loss of the
channels in rural (flat) environments for typical macro-
cell deployments. The transmission loss, Ld, expressed in
decibels is given by [25]

Ld = 46.3 + 33.9 log10 f − 13.82 log10 ht − a(hr)
+ (44.9 − 6.55 log10 ht

)
log10 d + Cm,

(32)

where f is the carrier frequency in MHz, d is the distance
between BS and UT antennas in km, and ht is the height
of the BS above ground level in m. The parameter Cm is
defined as 0 dB for suburban or rural environments and
3 dB for metropolitan environments. The parameter a(hr)
is defined for rural environments as [26]

a (hr) = (1.1 log10 f − 0.7
)
hr − (1.56 log10 f − 0.8

)
,

(33)

r kmBS1

BS2 BS3

d km

Fig. 2 Three-cell MIMO-OFDM network with downlink CoMP and UTs
located at the cell-edge. We vary the distance between BSs to model
different channel-to-noise ratios (CNRs)

where hr is the height of the UT above ground level in
meters. The simulation parameters from [25, 30, 31] are
given in Table 1.
In the simulation results, we investigate the power

minimization performance of our proposed algorithm in
various interference environments by varying the dis-
tance between cooperating BSs, which is denoted as d in
Fig. 2, ranging from 5 to 40 km in a typical LTE macrocell
deployment [31]. Based on these distances, a received

Table 1 COST 231 path-loss model parameters [25, 30, 31]

Simulation parameters

Bandwidth (MHz) 10

Carrier frequency (GHz) 2

BS height (m) 30

Maximum Tx power (dBm) 46

RF feeder cable/connector loss (dB) 2

Antenna gain (dBi) 18

Receiver height (m) 5

Antenna gain (dBi) 8

Noise figure (dB) 7

Thermal noise (dBm/Hz) −174

Receiver noise floor (dBm) −97

Slow fading margin (dB) 8
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channel-to-noise ratio (CNR) on the (n, l)th spatial sub-
channel for the kth UT, which is given by [10]

CNRk
n,l = 
k

n,l

σ k
n,l

2 , (34)

where 
k
n,l is the effective channel gain after precoding

and postprocessing. The noise power is assumed to be
equal across all OFDM subchannels. We average the sim-
ulation results over a total of 16,000 channel realizations,
which is obtained from 100 simulation iterations for each
UT subchannel.
Figure 3 shows total power minimization comparison

between our proposed SCA and other two alternative
approaches of IWF in [24] and ZFB with semi-orthogonal
user selection [15]. The BS-to-BS separation distance is
set to d = 5 km and the resulting average received
CNR = −7.66 dB which indicates in a low-interference
environment where the interference power is insignifi-
cant compared with the noise power. The results show
that the proposed SCA algorithm provides the lowest total
transmit power compared with IWF and ZFB for a given
per-UT rate target. We notice that IWF provides a similar
performance to SCA whereas ZFB results in the highest
total transmit power for a given per-UT target rate. For
example, SCA and IWF offer an approximately 50W of
saving in total transmit power to achieve a per-UT rate
target of 4.5Mbits/s.
Figure 4 compares SCA, IWF, and ZFB with a distance

between cooperating BSs of d = 20 km. The result-
ing average received CNR= 2.94 dB which indicates a
medium-interference environment where the interference

power is comparable to the noise power. In this scenario,
we notice that our proposed SCA algorithm can achieve
the lowest total transmit power for a given per-UT rate
target. For a total transmit power of 120W between coop-
erating BSs, we can see that IWF is limited to 19Mbits/s
per UT as a result of interference. Despite the canceling of
interference between the scheduled UTs, we see that ZFB
results in a higher total transmit power of 102W com-
pared to SCA of 67W for a rate target of 24Mbits/s per
UT. This is due to the reduction in the effective channel
gain of the scheduled UTs as a result of performing ZFB
on the channel gain matrices of the scheduled UTs in each
subchannel.
Figure 5 compares SCA, IWF, and ZFB with the BS-

to-BS separation distance set to d = 40 km. The
average received CNR= 21.12 dB, which models a high-
interference environment where the noise power is
insignificant compared to the interference power. The plot
shows that ZFB results in the lowest total transmit power
for a given per-UT target rate compared with SCA and
IWF. This is because ZFB cancels interferences between
scheduled UTs which are selected by the semi-orthogonal
user selection in each subchannel. For a total power con-
straint across the two cooperating BSs, we see that SCA
and IWF can achieve a maximum of 45 and 25Mbits/s
per UT, respectively. From this comparison, we notice that
SCA offers a better interference management than IWF
with a lower total transmit power for a given per-UT rate
target.
Next, we investigate the relationship between the min-

imum achievable rates per-UT and the coverage radius,
r. To ensure the distribution of UT changes with the
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Fig. 3 Transmit power comparison of SCA, IWF, and ZFB in low-interference environments with different per-UT rate targets and d = 40 km
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Fig. 4 Transmit power comparison of SCA, IWF, and ZFB in
medium-interference environments with different per-UT rate targets
and d = 20 km

coverage radius, we place the UTs uniformly distributed
on the circumference of the coverage circle as the circle
expands to simulate UTs scatter between cooperating BSs.
The minimum achievable rates refer to the minimum rate
between per-UT rate targets when the per-antenna pow-
ers are close to be fully utilized. The results are obtained
from the average of 100 simulation iterations.
Figure 6 compares theminimum achievable rate of SCA,

IWF, and ZFB with a BS-to-BS separation distance d =
40 km. In this scenario, we notice that both SCA and
IWF result in a similar performance whereas ZFB achieves
the lowest minimum per-UT rate target. Comparing SCA
and IWF, the minimum per-UT rate target increases with
coverage radius as the interference decreases.

Fig. 5 Transmit power comparison of SCA, IWF, and ZFB in
high-interference environments with different per-UT rate targets and
d = 5 km

Figure 7 compares theminimum achievable rate of SCA,
IWF, and ZFB with a BS-to-BS separation distance d =
20 km. The performance between SCA and IWF widens
as the interference increases at each coverage radius. ZFB
outperforms IWF when the coverage radius is less than
4.5 km as the MUI is the dominating factor in system per-
formance. The altruistic approach of allocating power in
SCA is able to outperform ZFB despite the MUI com-
pletely eliminated by the beamformers.
Figure 8 compares theminimum achievable rate of SCA,

IWF, and ZFB with a BS-to-BS separation distance d =
5 km. In this scenario, the performance of both SCA and
IWF is limited by the severity of the MUI and the mini-
mum achievable rates are 48 and 20Mbit/s, respectively.
As expected, ZFB results in the best performance as the
approach provides interference-free MIMO-OFDM spa-
tial subchannels for scheduled UTs. From these plots, we
notice that the performance gap between SCA and IWF
depends on the severity of theMUI. The egoistic approach
of allocating powers in IWF results in lower performance
compared to the interference minimizing approach of
SCA.

5.1 Complexity analysis
The computational complexity of the proposed algorithm,
IWF and ZFB, consists of two stages: (1) computation
of beamformers for each MIMO-OFDM subchannel and
(2) updates of power allocation and Lagrange multipliers.
We focus on the computational complexity of obtain-
ing beamformers as the power and Lagrange multipliers
update has fixed complexity and is negligible compared to
the beamforming of eachMIMO-OFDM subchannel. The
computational complexity of each algorithm is calculated
as follows:

• For the proposed algorithm: The eigenbeamforming
of each MIMO-OFDM subchannel is obtained by the
SVD of MIMO-OFDM subchannelHk

n. The channel
matrixHk

n is a LR × MLT complex matrix. To obtain
the SVD of eachHk

n requires 8
(
4LR2MLT + 8LR

(MLT )2 + 9 (MLT )3
)
complex floating point

operations [32]. The total number of complex
floating point operations across all MIMO-OFDM
subchannel and UTs is approximately

K∑
k=1

N∑
n=1

8kn
[
4LR2MLT + 8LR (MLT )2 + 9 (MLT )3

]
.

(35)

Therefore, the overall computational complexity of
the proposed algorithm is

O
{
8KN

[
4LR2MLT + 8LR (MLT )2 + 9 (MLT )3

]}
.

(36)
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Fig. 6Minimum achievable rate comparison of SCA, IWF, and ZFB with a BS-to-BS separation of d = 40 km

• The overall computational complexity of IWF is
approximately the same as the proposed algorithm
since the eigenbeamforming is performed across all
MIMO-OFDM subchannels, which is given by

O
{
8KN

[
4LR2MLT + 8LR (MLT )2 + 9 (MLT )3

]}
.

(37)

• For ZFB with semi-orthogonal user selection: This
algorithm consists of two stages: (1) semi-orthogonal
user selection and (2) obtaining zero-forcing
beamformers. The computational complexity of
semi-orthogonal user selection is given by
O[KN(LT )3] [33]. Finding zero-forcing beamformers
involves block diagonalization across all the
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Fig. 7Minimum achievable rate comparison of SCA, IWF, and ZFB with a BS-to-BS separation of d = 20 km
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Fig. 8Minimum achievable rate comparison of SCA, IWF, and ZFB with a BS-to-BS separation of d = 5 km

MIMO-OFDM subchannels, which can be obtained
by performing SVD. The total number of complex
floating point operations is approximately

K∑
k=1

N∑
n=1

8nk
[
8LR (MLT )2 + 9 (MLT )3

]
. (38)

Therefore, the overall computational complexity of
ZFB with semi-orthogonal user selection is given by

O
{
KN

[
64LR (MLT )2 + L3T + 72 (MLT )3

]}
.
(39)

6 Conclusions
In this paper, the individual UT rate target is achieved by
transforming a non-convex optimization problem into a
tractable set of successive convex approximations. A con-
vex lower bound is updated at each iteration to improve
the approximation of the achievable rate region, where a
dual Lagrange decomposition and a subgradient method
is efficient in obtaining the locally optimal solution. Aver-
age power constraints are enforced on each antenna for
all BSs, which helps manage the resulting peak power
effects (via OFDM’s inherently high PAPR) for all trans-
mission high-powered amplifiers. We envision this work
to be more suited for small cells with low user mobility,
but more importantly, for fixed-wireless applications in
sparsely populated regions that require high data rates to
UTs over very large network areas.
The effectiveness of our proposed SCA-based algorithm

was demonstrated through a performance comparison

of SCA and the alternative approaches of IWF in [24]
and ZFB in [15]. Comparing SCA and IWF, we see that
SCA provides a lower total transmit power and higher
minimum per-UT rate target relative to IWF in a range
of interference environments. In general, we find that
the higher the interference between UTs, the larger dif-
ference in terms of total transmit power and minimum
per-UT target rate between SCA and IWF. As expected,
ZFB performs well in high-interference environments as
it provides interference-free subchannels for the sched-
uled UTs. However, the performance of ZFB is limited by
the number of transmit antennas and the mutual orthog-
onality of the scheduled UTs’ channel conditions. As
such, we find that ZFB results in a higher total trans-
mit power and lower minimum achievable rate solution
than SCA and IWF in bothmedium- and low-interference
environments.
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