34 research outputs found

    m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    Get PDF
    The proteolytic processing of dynamin like GTPase OPA1, mediated by the activity of both YME1L1 (i-AAA protease complex) and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 (m-AAA complex) as the major protease mediating this event by maturing the pre-pro-OMA1 of 60 kDa to the pro-OMA1 form of 40 kDa by severing the amino-terminal part without recognizing specific consensus sequence. Therefore, m-AAA and i-AAA complexes coordinately regulate OMA1 processing and turnover, and consequently OPA1 isoforms, thus adding new information in the comprehension of the molecular mechanisms in mitochondrial dynamics and of neurodegenerative diseases affected by these phenomena

    Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases

    Get PDF
    Lysosomal storage disorders (LSDs) are inherited diseases characterized by lysosomal dysfunction and often showing a neurodegenerative course. There is no cure to treat the central nervous system in LSDs. Moreover, the mechanisms driving neuronal degeneration in these pathological conditions remain largely unknown. By studying mouse models of LSDs, we found that neurodegeneration develops progressively with profound alterations in presynaptic structure and function. In these models, impaired lysosomal activity causes massive perikaryal accumulation of insoluble α-synuclein and increased proteasomal degradation of cysteine string protein α (CSPα). As a result, the availability of both α-synuclein and CSPα at nerve terminals strongly decreases, thus inhibiting soluble NSF attachment receptor (SNARE) complex assembly and synaptic vesicle recycling. Aberrant presynaptic SNARE phenotype is recapitulated in mice with genetic ablation of one allele of both CSPα and α-synuclein. The overexpression of CSPα in the brain of a mouse model of mucopolysaccharidosis type IIIA, a severe form of LSD, efficiently re-established SNARE complex assembly, thereby ameliorating presynaptic function, attenuating neurodegenerative signs, and prolonging survival. Our data show that neurodegenerative processes associated with lysosomal dysfunction may be presynaptically initiated by a concomitant reduction in α-synuclein and CSPα levels at nerve terminals. They also demonstrate that neurodegeneration in LSDs can be slowed down by re-establishing presynaptic functions, thus identifying synapse maintenance as a novel potentially druggable target for brain treatment in LSDs

    Protein Isoaspartate Methyltransferase Prevents Apoptosis Induced by Oxidative Stress in Endothelial Cells: Role of Bcl-Xl Deamidation and Methylation

    Get PDF
    BACKGROUND:Natural proteins undergo in vivo spontaneous post-biosynthetic deamidation of specific asparagine residues with isoaspartyl formation. Deamidated-isomerized molecules are both structurally and functionally altered. The enzyme isoaspartyl protein carboxyl-O-methyltransferase (PCMT; EC 2.1.1.77) has peculiar substrate specificity towards these deamidated proteins. It catalyzes methyl esterification of the free alpha-carboxyl group at the isoaspartyl site, thus initiating the repair of these abnormal proteins through the conversion of the isopeptide bond into a normal alpha-peptide bond. Deamidation occurs slowly during cellular and molecular aging, being accelerated by physical-chemical stresses brought to the living cells. Previous evidence supports a role of protein deamidation in the acquisition of susceptibility to apoptosis. Aim of this work was to shed a light on the role of PCMT in apoptosis clarifying the relevant mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS:Endothelial cells transiently transfected with various constructs of PCMT, i.e. overexpressing wild type PCMT or negative dominants, were used to investigate the role of protein methylation during apoptosis induced by oxidative stress (H(2)O(2); 0.1-0.5 mM range). Results show that A) Cells overexpressing "wild type" human PCMT were resistant to apoptosis, whereas overexpression of antisense PCMT induces high sensitivity to apoptosis even at low H(2)O(2) concentrations. B) PCMT protective effect is specifically due to its methyltransferase activity rather than to any other non-enzymatic interactions. In fact negative dominants, overexpressing PCMT mutants devoid of catalytic activity do not prevent apoptosis. C) Cells transfected with antisense PCMT, or overexpressing a PCMT mutant, accumulate isoaspartyl-containing damaged proteins upon H(2)O(2) treatment. Proteomics allowed the identification of proteins, which are both PCMT substrates and apoptosis effectors, whose deamidation occurs under oxidative stress conditions leading to programmed cell death. These proteins, including Hsp70, Hsp90, actin, and Bcl-xL, are recognized and methylated by PCMT, according to the general repair mechanism of this methyltransferase. CONCLUSION/SIGNIFICANCE:Apoptosis can be modulated by "on/off" switch partitioning the amount of specific protein effectors, which are either in their active (native) or inactive (deamidated) molecular forms. Deamidated proteins can also be functionally restored through methylation. Bcl-xL provides a case for the role of PCMT in the maintenance of functional stability of this antiapoptotic protein

    Homocysteinylated Albumin Promotes Increased Monocyte-Endothelial Cell Adhesion and Up-Regulation of MCP1, Hsp60 and ADAM17

    Get PDF
    RATIONALE:The cardiovascular risk factor homocysteine is mainly bound to proteins in human plasma, and it has been hypothesized that homocysteinylated proteins are important mediators of the toxic effects of hyperhomocysteinemia. It has been recently demonstrated that homocysteinylated proteins are elevated in hemodialysis patients, a high cardiovascular risk population, and that homocysteinylated albumin shows altered properties. OBJECTIVE:Aim of this work was to investigate the effects of homocysteinylated albumin - the circulating form of this amino acid, utilized at the concentration present in uremia - on monocyte adhesion to a human endothelial cell culture monolayer and the relevant molecular changes induced at both cell levels. METHODS AND RESULTS:Treated endothelial cells showed a significant increase in monocyte adhesion. Endothelial cells showed after treatment a significant, specific and time-dependent increase in ICAM1 and VCAM1. Expression profiling and real time PCR, as well as protein analysis, showed an increase in the expression of genes encoding for chemokines/cytokines regulating the adhesion process and mediators of vascular remodeling (ADAM17, MCP1, and Hsp60). The mature form of ADAM17 was also increased as well as Tnf-α released in the cell medium. At monocyte level, treatment induced up-regulation of ICAM1, MCP1 and its receptor CCR2. CONCLUSIONS:Treatment with homocysteinylated albumin specifically increases monocyte adhesion to endothelial cells through up-regulation of effectors involved in vascular remodeling

    MiR-17 and -20a target the neuron-derived orphan receptor-1 (NOR-1) in vascular endothelial cells

    No full text
    Neuron-derived orphan receptor-1 (NOR-1) plays a major role in vascular biology by controlling fibroproliferative and inflammatory responses. Because microRNAs (miRNAs) have recently emerged as key players in the regulation of gene expression in the vasculature, here we have investigated the regulation of NOR-1 by miRNAs in endothelial cells. Computational algorithms suggest that NOR-1 could be targeted by members of the miR-17 family. Accordingly, ectopic over-expression of miR-17 or miR-20a in endothelial cells using synthetic premiRNAs attenuated the up-regulation of NOR-1 expression induced by VEGF (as evidenced by real time PCR, Western blot and immunocitochemistry). Conversely, the antagonism of these miRNAs by specific antagomirs prevented the down-regulation of NOR-1 promoted by miR-17 or miR-20a in VEGF-stimulated cells. Disruption of the miRNANOR- 1 mRNA interaction using a custom designed target protector evidenced the selectivity of these responses. Further, luciferase reporter assays and seed-sequence mutagenesis confirmed that miR-17 and -20a bind to NOR-1 3â\u80²-UTR. Finally, miR-17 and -20a ameliorated the up-regulation of VCAM-1 mediated by NOR-1 in VEGF-stimulated cells. Therefore, miR-17 and -20a target NOR-1 thereby regulating NOR-1-dependent gene expression

    A protector sequence against the NOR-1 3’-UTR seed region prevents the regulation by miR-17 and -20.

    No full text
    <p>HUVEC were transfected with precursors of either miR-17 or miR-20a (P17 or P20) or a scramble sequence (Scr) in the presence or in the absence of a miScript target protector that blocks the NOR-1 3’-UTR seed sequence recognized by the miR-17 and -20 (NOR1-Prot). Then cells were stimulated with VEGF (100 ng/ml, 2 h). NOR-1 expression was assessed by real-time PCR <b>(A)</b> and Western-blot <b>(B)</b>. Results are expressed as mean ± SD from at least n = 4. (<i>p</i><0.05: *, <i>vs</i>. untransfected cells [Control, CT] or cells transfected with Scr).</p

    NOR-1 transcript contains a miR-17/-20 putative binding site in the 3’-UTR.

    No full text
    <p>Schematic representation of the human NOR-1 3’-UTR transcript (NM_006981) showing the highly conserved miR-17/-20 binding site among species (positions 2894–2900 in NM_006981 sequence). The seed sequence of miR-17/-20 (nt 2–10) is indicated in bold.</p

    The NOR-1 protector prevents the down-regulation of VCAM-1 promoted by miR-17 and -20.

    No full text
    <p>HUVEC were transfected with precursors of either miR-17 or miR-20a (P17 or P20) or a scramble sequence (Scr) in the presence or in the absence of a miScript target protector that blocks the NOR-1 3’-UTR seed sequence recognized by the miR-17 and -20a (NOR1-Prot). Then cells were stimulated with VEGF (100 ng/ml, 2 h). VCAM-1 expression was assessed by real-time PCR <b>(A)</b> and Western-blot <b>(B)</b>. Results are expressed as mean ± SD from at least n = 4. (<i>p</i><0.05: *, <i>vs</i>. untransfected cells [Control, CT] or cells transfected with Scr; #, <i>vs</i>. cells transfected with Scr and stimulated with VEGF; †, <i>vs</i>. cells exposed to the same condition but without NOR1-Prot).</p

    Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation

    Get PDF
    Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals
    corecore