11 research outputs found
Dilute suspensions in annular shear flow under gravity: simulation and experiment
A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC) and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction
Multiscale Simulation of the Formation of Platinum-Particles on Alumina Nanoparticles in a Spray Flame Experiment
Platinum decorated alumina particles have the potential of being a highly (cost-)effective catalyst. The particles are synthesized from platinum(II) acetylacetonate dissolved in a mixture of isopropanol and acetic acid with dispersed alumina carriers. The process is simulated by means of large eddy simulation with reaction kinetics and aerosol dynamics modeling. A two mixture fraction approach for tabulated chemistry with a thickened flame model is used to consider the complex reaction kinetics of the solvent spray combustion. Diffusion is described followings Ficks law with a unity Lewis number for the gas phase species, whereas the particle diffusion coefficients are calculated according to the kinetic theory. An extended model for aerosol dynamics, capable of predicting deposition rate and surface particle growth, is derived from the classical sectional technique. The simulations are compared and validated with product particle characteristics obtained from the experimental observations. Distributions for different locations within the simulation domain show the evolution of particle sizes deposited on the alumina particle surface, and transmission electron microscopy (TEM) images of the composite particles are shown in comparison to 3D particles ballistically reconstructed from simulation data. The ratio of deposited platinum on the alumina carrier particles and the mean diameters of the deposited particles are in good agreement with the experimental observation. Overall, the new method has demonstrated to be suitable for simulating the particle decoration process
Impact of Fe-doped H2/O2 flame equivalence ratio on the fate and temperature history of early particles
The temperature and species concentration history experienced by the gas-borne nanoparticles during their evolution in the flame has a major impact on their size, morphology, composition, and crystallinity. In our recent work (Combust. Flame, 244 (2022) 112251), we have reported optical emission measurements of a Fe(CO)5-doped H2/O2/Ar fuel-lean (ɸ = 0.5) flame, revealing that the temperature of the early-formed nanoparticles exceeds the gas temperature by several hundred degrees, while the particle volume fraction increases sharply, followed by rapid disintegration in the reaction zone. This behavior, modeled by single particle Monte-Carlo simulations indicates involvement of heterogeneous reactive processes at the particle surface, such as particle reduction and oxidation, growth and etching. Within the refined approach of the current study, reactive and non-reactive collisions were treated consistently, assuming rapid thermalization between the impinging molecule and the particle, with subsequent random energy sampling to determine reactivity. In the present work, we test the limits and validity of the heterogeneous flame-particle interaction model by manipulating the oxidation–reduction and growth-etching balance by varying the equivalence ratio (0.25<ɸ<1.5). For the entire range of equivalence ratios studied in experiments and simulations, we find a deviation between the particle and gas phase temperatures with significantly higher particle temperature, which is continued until a full degree of iron oxidation within the particle (O/Fe ratio=3/2) is reached. Validating the simulations against the measurements of particle temperature and volume fraction over a wide range of equivalence ratios, emphasized the necessity to account for gas-phase Fe-atom concentration depletion. We incorporated nucleation theory to estimate initial cluster population, linking Fe-concentration variation in the gas phase and the stochastic particle evolution model. The surface reaction parameters in our current work were updated using density functional theory literature data, and validation of the model predictions against experimental data, across the entire range of equivalence ratios
Dilute suspensions in annular shear flow under gravity: simulation and experiment
A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC) and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction
Dilute suspensions in annular shear flow under gravity: simulation and experiment
A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC) and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction
Simulations of laminar methane flames doped with iron nitrate/1-butanol aerosol in a novel matrix burner
A novel matrix burner enabled the investigation of aerosol-doped laminar low-pressure flames. Iron nitrate dissolved in 1-butanol was used as a typical model system, also found in the flame spray pyrolysis for synthesis of iron oxide. The state of the aerosol entering the flame front was quantified by single-droplet evaporation calculations. Three-dimensional simulations were conducted to quantify thermal losses and the impact of buoyancy on the deviation from an ideal one-dimensional approximation. Highly resolved simulations of the burner matrix confirmed the compact, external mixing zone and the flatness of the flame in the low-pressure operation. Simulations based on the one-dimensional approximation demonstrated the suitability of the experimental setup for reaction kinetics investigations. The results were compared and validated by temperature measurements and probing mass spectrometry. Based on investigations of the particle-producing flame, a hypothesis about the origin of gas-borne nanoparticles in the spray-flame synthesis process was derived. This work demonstrates the suitability of the novel matrix burner for the investigation of reaction kinetics in aerosol doped, quasi-premixed, flat flames using one-dimensional, laminar flame simulations
Revisiting iron oxidation chemistry in synthesis flames: Insights from a shock-tube study with intracavity laser absorption spectroscopy tracking of FeO
The reaction between Fe atoms and O2 in a mixture of iron-pentacarbonyl (IPC, 2 ppm) and oxygen (100 ppm), diluted in argon, has been studied in a shock tube behind reflected shock waves over the temperature and pressure ranges of 1050–3400 K and 0.7–2.0 bar. Time-resolved measurements of Fe and FeO have been performed simultaneously using a combination of atomic resonance absorption spectroscopy (ARAS) and intracavity laser absorption spectroscopy (ICAS) with a custom-made broadband dye laser, respectively. For ICAS, absorption features in the spectral range from 16,316 to 16,353 cm−1 have been evaluated, and the oscillator strengths for all 41 assigned ro-vibronic transitions have been expressed. For most of the experimental cases, the measured Fe and FeO traces agreed well with the mechanism reported in this work. The quantitative and highly-sensitive measurements revealed the presence of FeO at temperatures below 1400 K, leading to a reconsideration of rate coefficients for different Fe oxidation channels
Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame
The burner stabilized stagnation flame technique coupled with micro-orifice probe sampling and mobility sizing has evolved into a useful tool for examining the evolution of the particle size distribution of nascent soot in laminar premixed flames. Several key aspects of this technique are examined through a multi-university collaborative study that involves both experimental measurement and computational modeling. Key issues examined include (a) data reproducibility and facility effects using four burners of different sizes and makers over three different facilities, (b) the mobility diameter and particle mass relationship, and (c) the degree to which the finite orifice flowrate affects the validity of the boundary condition in a pseudo one dimensional stagnation flow flame formulation. The results indicate that different burners across facilities yield nearly identical results after special attention is paid to a range of experimental details, including a proper selection of the sample dilution ratio and quantification of the experimental flame boundary conditions. The mobility size and mass relationship probed by tandem mass and mobility measurement shows that nascent soot with mobility diameter as small as 15 nm can deviate drastically from the spherical shape. Various non-spherical morphology models using a mass density value of 1.5g/cm3 can reconcile this discrepancy in nascent soot mass. Lastly, two-dimensional axisymmetric simulations of the experimental flame with and without the sample orifice flow reveal several problems of the pseudo one-dimensional stagnation flow flame approximation. The impact of the orifice flow on the flame and soot sampled, although small, is not negligible. Specific suggestions are provided as to how to treat the non-ideality of the experimental setup in experiment and model comparisons