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Abstract. A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision

dynamics (MPC) and compared to experimental data. The focus of the analysis is the local particle velocity

and density distribution under the influence of the rotational and gravitational forces. The results are further

supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of

the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between

the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment

however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the

method. The multi-particle system is investigated at the point of highest particle accumulation that is found

at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow

and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the

particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental

observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.

1 Introduction & Goals

Particle-laden flows in narrow annular gaps of hydraulic

fluid machinery may alter the systems’ performance even

at moderate seeding densities. However, the detailed parti-

cle behavior and underlying mechanisms such as local par-

ticle accumulation or particle segregation effects in Taylor-

Couette flows of narrow gaps are still little understood up

to date [1, 2].

Various numerical and experimental approaches have

been developed to analyze complex suspensions, includ-

ing combined discrete element and finite volume methods

[3] or imaging techniques [4]. A young simulation tech-

nique emerged from the so-called multi-particle collision

dynamics method (MPC) that mimics the fluid by coarse-

grained particles and a simplified collision model [5]. The

MPC technique fully incorporates hydrodynamic interac-

tions as well as thermal fluctuations and benefits from a

highly parallelized numerical implementation [6]. The

present study aims to develop numerical and experimen-

tal complementary methods to study the particle dynamics

of a dilute, sheared, rotating suspension under the influ-

ence of gravity. It focuses on the local particle velocity

and density variations while verifying the MPC method

as a predictive, stochastic tool by means of an especially

adapted A-PTV method. A finite volume CFD simulation

is additionally used to determine the threshold for over-
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critical laminar flow. After introducing the methodology,

we investigate a single-particle simulation and compare it

with a deterministic approximation. Afterwards, we com-

pare a multi-particle simulation with experimental results

at the position of highest local particle density. Special at-

tention is given to the capabilities and limitations of the

MPC method.
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Figure 1. a) Sketch of the system investigated by experiment

and simulations (not to scale); b) components of experimental

setup: 1 Taylor-Couette cell, 2 microscope objective, 3 micro-

scope tubus, 4 CCD camera, 5 Nd:YAG laser; c) close up of the

Taylor-Couette cell.
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2 Methods

2.1 System of investigation and dimensionless
characterization

Our setup consists of two concentrically and horizontally

aligned glass cylinders with 1 mm spacing that will be

called the Taylor-Couette cell, see Fig. 1. Its inner cylin-

der rotates with f = 0.467 Hz (~v0 = 0.18 m/s at its outer

edge), while the outer cylinder is stationary. The annular

gap between both cylinders is filled with distilled water

and monodisperse PMMA beads of 60 μm diameter. The

ratio of channel height (hc = 1 mm) to the radius of the

inner cylinder (Ri = 61.22 mm) is 0.016 and thus mini-

mizes the influence of curvature when focusing on a local

section.

The two dimensionless key parameters of the problem

at hand are the Froude number Fr = v20/(Ri g) = 0.055,
balancing the amplitudes of centrifugal and gravitational

forces, and the dimensionless frequency f ∗ = f h2 ρf/ηf =
4.5 · 10−7, i.e. the ratio of viscous relaxation time to the

rotation period (with g = 9.81 m/s2, fluid density ρf =
1000 kg/m3 and dynamic viscosity ηf = 0.001 Pa s). These
parameters place the presented setup between pure ver-

tically aligned sedimentation (Fr → 0) and radially ori-

ented centrifugation (Fr → ∞). The particles are slightly

denser compared to the fluid (ρs/ρf = 1.18). Very low

characteristic Mach and channel Reynolds numbers, Ma =

v0/csound = 1.25 · 10−4 and Rech = v0 hc ρf/ηf = 190, sup-

port the assumption of incompressible, laminar flow. The

particle Reynolds number based on the shearing rate is

Rep = (v0/hc)R2
p ρf/ηf = 0.162. Thermal fluctuations are

furthermore negligible owing to the large particle Peclet

number of Pe = (3πR3
p ηf v0)/(2hckBT ) = 2.26·107 at room

temperature.

2.2 MPC Simulation

The MPC method mimics the fluid in a stochastically

coarse-grained manner by mesoscopic fluid point particles

[5]. These fluid particles alternately undergo a streaming

and a collision step. During the streaming step, the fluid

particles move independently, keeping their velocity. Dur-

ing the collision step, particles are sorted into a grid of col-

lision cells, and their velocities relative to the cell’s mean

velocity are rotated about a rotation axis randomly gener-

ated for each cell and time step. This collision rule, known

as stochastic rotation dynamics (SRD), ensures local mo-

mentum and energy conservation. In the current numerical

setting, the collision-cell width is chosen to be 0.01 hc with
20 fluid particles per cell. The rotation angle of 100◦ and
the mean free path of 0.32 lead to ΔtMPC = 11.24ms.

The suspended solid particles are integrated by the Ve-

locity Verlet algorithm imposing ΔtMD = 0.1ΔtMPC and

particle-particle interaction via a hard-sphere potential.

Fluid-particle coupling is achieved by a bounce-back rule

during the streaming step and the use of virtual particles

during the collision step [7].

Instead of the full geometry, a cubic box of side length

hc is simulated, neglecting curvature of the boundaries.

The simulation box is interpreted as a reference frame that

is moving along the cylinder gap with mean fluid veloc-

ity v0/2. The box boundaries are shearing rigid walls in

radial direction and periodic boundaries in all other direc-

tions. In addition to the gravitational force, Coriolis and

centrifugal forces are applied to the suspended colloids.

Following the reference frame, the gravitational force is

rotated accordingly in order to recover its varying influ-

ence at different angular positions along the cylinder. In

the case of a single particle, rotation is adjusted by the

global particle position. Because incompressibility in the

MPC fluid is not assured, applying the above mentioned

forces to the fluid particles would lead to non-physical ar-

tifacts. Instead, effective buoyancy is taken into account

according to the colloid-fluid density mismatch.

2.3 Experiment

Centrifugal and gravity-driven particle dynamics were

studied in an optically accessible Taylor-Couette setup

by means of shadowgraphy imaging (see Fig. 1 b)). A

frequency-doubled dual cavity Nd:YAG laser (New Wave

Solo III-15) with 532 nm wavelength and 8 ns pulse length

was used for volume illumination. The laser beam was

guided into the Taylor-Couette setup to excite a red flu-

orescent color-coated plate. In this way, incoherent fluo-

rescence light is emitted passing through inner and outer

glass cylinders in positive radial direction to create a ho-

mogeneous, speckle-free background illumination. Im-

ages were taken with a 12 bit dual frame CCD-cameras

(Imager Intense, LaVision) with 1376 x 1040 image size.

Using a microscope objective of 5x magnification and 12

μm focal depth (CFI60 TU Plan (MUE12050), Nikon), an

image resolution of 1.26 μm/pixel is reached, yielding a

field of view of 1.76 mm x 1.32 mm. A suspension of

PMMA particles (Microbeads AS; final diameter as pro-

vided by the manufacturer of 62.8 μm ± 1.2 % standard

deviation) was injected in the inlet of the system briefly

before the experiment was initiated. Fifty double-frame

images were taken every 5 μm along the gap width. A

3D-PTV procedure was developed similar to Cierpka et

al. [8] to achieve an out-of plane particle position recon-

struction. Radial particle positions could be determined

with an overall standard deviation of 34 μm accuracy. The

reference position at the outer cylinder was determined by

reducing invalid detections outside the channel to less than

4% of all particles.

2.4 Finite Volume Simulation

As a second numerical approach, the 3D-CFD software

OpenFOAM was used to estimate the transition range

towards Taylor-Couette-instabilities [3]. The convective

fluxes are discretized by a total variation diminishing

scheme (TVD) with the Sweby limiter. A larger simulation

box of 5 mm x 5 mm x 1 mm was chosen to account for

the system’s curvature and thus implicitly consider cen-

trifugal and Coriolis forces. No-slip boundary conditions

are applied to the cylinder walls and periodic boundaries

are used in axial and circumferential direction.
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2.5 Deterministic approximation of the
single-particle trajectory

The steady-state trajectory of a single particle was theoret-

ically approximated by Newton’s second law and solved

numerically using MATLAB’s ode solver ode15s. The

governing equations account for inertia, Stokes drag, grav-

itation, the Saffman lift force [9] and the virtual-mass force

[10]. A stationary flow field, elastic slip motion at contact

with the outer wall and negligible angular motion of the

particle were assumed. Coriolis and Basset forces were

neglected, because of small radial and relative velocities

between particle and fluid.

3 Results and Discussion

3.1 Methodological peculiarities and limitations

We consider it helpful to discuss the major peculiarities

and limitations of each method before comparing and eval-

uating the specific results. This clarification helps to jus-

tify the assumptions made and to highlight potentially de-

viating conditions beforehand.

Thermal noise incorporated in the MPC method re-

duces the Peclet number from Pe = 2.26 ·107 in the exper-
iment to 28 in the simulation. In the case of multiple parti-

cles, all particles are exposed to the same orientation of the

gravity force that is determined by the location of the refer-

ence frame. This assumption is motivated by small curva-

ture effects within the simulation box. Nevertheless, par-

ticles on an inner radial trajectory rotate faster and should

experience a shorter force oscillation and vice versa. Us-

ing the mean fluid velocity for the reference frame is there-

fore assumed as a compromise.

The formation of a distinguished particle band perpen-

dicular to the cylinder axis was observed in the experi-

ment. This is a well-known phenomenon in particle-laden

drum flows exceeding a particle-density threshold for in-

termediate frequencies [11]. In the present case, the band

formation is 5 mm to 10 mm in thickness, depending on

the circumferential position, and thus qualified as a homo-

geneous particle distribution on the length scale of 1 mm

to be compatible with the assumptions of the numerical

approaches. The measurements were hence performed in

the centerline of the band to ensure the most periodic con-

ditions possible.

Taylor-Couette-instabilities were prevented by keep-

ing the channel Reynolds number Rech = 190 below the

critical value of Rech,crit ≈ 350, which was determined by

a linear stability analysis. Accordingly, no Taylor vortices

are observed for the operation point of the experiment.

This was verified by the finite volume method via a pa-

rameter test that identified a transition at Rech,crit ≥ 3800.

3.2 Single particle

The deterministic single-particle approximation predicts

a long-term trajectory, along which single particles will

move independently of their starting position as illustrated

in Fig. 2. The MPC simulation resembles this characteris-

tic trajectory, distinguishing a convection-dominated drift

period from a contact period at the lower left wall. Aver-

aged over six revolutions, the simulation predicts closest

approach to the wall approximately 25◦ earlier. The in-

dividual retention of minimum particle-wall distance also

fluctuates and is generally smaller in the MPC simulation.

The comparably strong delay observed in the deterministic

approximation may result from the simplifying assump-

tions yielding an underestimation of the total lift force

[12]. A final quantitative evaluation exceeds the scope of

this work, and the necessity of a more precise modeling

of close contact will be discussed below against the back-

ground of multiple particles.

Figure 2. Comparison between steady-state deterministic ap-

proximation and MPC simulation of the trajectory of a single

particle (not to scale, channel height is magnified).

3.3 Multiple particles

The study of multiple particles is focused on a section at

240◦ clockwise revolution, where the single-particle re-

sults predict strongest particle-wall interaction and there-

fore the highest particle accumulation, see Fig. 3 a). The

corresponding particle distribution over the annular gap

derived from experiments and simulations are in good

agreement, as can be seen in Fig. 3 b). The simulations

were performed with 63 particles per mm3 corresponding

to a mean particle volume fraction of 0.7% in this sec-

tion as found in the experiment. However, most particles

are located in an interval of approximately 15% gap-width

centered around the maximum density at 1.5 particle di-

ameters (i.e. 90 μm) outer wall distance, leading to a local

volume fraction of 4.7%. In this region, the slope of the

almost linear particle velocity profile is slightly reduced,

see the left 180 μm interval in Fig. 3 c). This behavior can

be qualitatively understood by particle-induced changes in

viscosity, estimated by the Krieger model [13] to reach

13% deviation in this region of highest accumulation com-

pared to only 2% for the section’s mean volume fraction.

Particles do not adhere to the resting wall collectively.

Their behaviour rather resembles the one of a single par-

ticle as observed from the MPC simulation. We assume

that a wall-lift force prevents the particles from getting

into direct contact with the wall [12]. Also direct contact

or short-range hydrodynamic interaction between particles

can enhance repulsion in the particle cloud.

We suggest that the accuracy of the present MPC

simulation mainly depends on particle-fluid and particle-

particle momentum exchange, because of the rare particle-

wall contacts. This is supported by the similarity between
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the stochastic MPC approach and the experimentally ob-

served attributes of the particle and velocity distributions.

Possible sources for quantitative deviations are the finite

Pe number as well as periodic boundary conditions. Slight

layering is also observed in the simulation, see the local

peaks approximately one particle diameter apart in Fig. 3.

This can be explained by the constant rotation period as-

sumed for the numerically implemented reference frame

that allows for a development of particle layers before

break-up. Future studies extending the periodically con-

fined simulation box will allow for a more accurate im-

plementation of the gravity force acting individually on

each particle such that the time-dependent formation can

be predicted more precisely.

240°

1 mm

1 m
m

 experiment (front view) MPC (side view)

1.76 m
m

1.32 mm

Figure 3. a) Position of the evaluation region at 240◦ for the

multi-particle study with snapshots of experimental and MPC

data; b) density profile of the particle distribution per 5 μm-

interval for experiment and MPC simulation normalized by to-

tal particle number and plotted over normalized radial distance

y from the outer cylinder; c) velocity profile for experiment and

MPC simulation averaged over 5 μm-intervals with standard de-

viation as vertical lines plotted over normalized radial distance y

from the outer cylinder.

4 Conclusion

We studied dilute suspensions in annular shear flow nu-

merically and experimentally with a ratio of radial cen-

trifugal forces to vertical gravity forces of 0.055. The

single-particle trajectory predicted by the MPC simulation

shows good agreement with the deterministic approxima-

tion during the distinct periods of free drift and wall con-

tact. The closest approach to the wall and the subsequent

release appeared earlier in the MPC simulation. This can

be explained by thermal fluctuations that are inherent to

the MPC approach and better reflect stochastic perturba-

tions of the steady-state trajectory. The multi-particle sys-

tem accordingly shows rare particle-wall contacts and a

peak of the particle distribution about 1.5 diameters away

from the outer wall, leading to a locally increased volume

fraction (0.7%→ 4.7%) and viscosity (2%→ 13%). These

characteristics are also well predicted by the MPC sim-

ulations; notwithstanding the algorithmic restrictions in

terms of Peclet number, Mach number and periodic bound-

aries. Future studies will focus on the improvement of the

MPC simulation in terms of larger Peclet numbers and a

gravitational stimulation that acts individually on the time-

dependent position of each particle.
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