8 research outputs found

    Analysis of Wind Power Potential in Samiang Bay, Kotabaru, South Kalimantan

    Get PDF
    This research was conducted to determine the potential for wind power from the Tamiang Bay area, Kotabaru, South Kalimantan. This study uses data on the average daily wind speed in Tamiang Bay with latitude -4.058883°, longitude 116.050259° obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). Based on the analysis that has been done, the average daily wind speed in Tamiang Bay is 4 m/s for a height of 10 m and 5.98 m/s for a height of 50 m. Through the assumption that using a Gamesa G114-2.5 MW wind turbine with a tower height of 80 m, in one year, the Tamiang Bay area has the potential to produce 2646.58 MWh of wind power. Thus, the Tamiang Bay area is said to be very potential for wind power development

    Fabrication and Performance Analysis of AZO and MCCO as Thin Film-Thermoelectric Generator Materials

    Get PDF
    The purpose of this research was to determine the performance of AZO and MCCO materials as constituents of the thin film-thermoelectric generator module. The method used for fabrication is DC Magnetron Sputtering. The electrode material used is Ag and the substrate used is SiO2 glass. The arrangement of the thin film used for the fabrication of the thermoelectric module is P-N-P-N-P-N-P-N-P-N (5 couples of p-n junctions). Based on the test results, the thickness of the thin film type N is 74.72 nm and type P is 90.34 nm. At the highest test temperature (300 oC), the AZO Seebeck coefficient value is -108 µV/K while the MCCO Seebeck coefficient value is 350 µV/K, and the AZO electrical resistivity value is 0.07 Ω.m while the MCCO electrical resistivity value is 0.36 Ω.m. The highest temperature difference given in the test of the AZO and MCCO thin film thermoelectric module is 1.538 °C and the thermoelectric module can produce a voltage of 1,842 ± 0.047 mV, a Seebeck coefficient of 4 µV/K, and an efficiency of 0.44%. Based on this research, it can be concluded that the performance of AZO and MCCO thin film-thermoelectric modules will have better performance at temperatures around 300 - 350 °C

    Penggunaan Metode DC Magnetron Sputtering dalam Pembuatan Lapisan Tipis Tipe N (AZO) Sebagai Modul Termoelektrik

    Get PDF
    Penelitian mengenai termoelektrik sedang gencar dikembangkan sejak tahun 1990. Pada tahun 2017, mulai dikembangkan termoelektrik yang menggunakan lapisan tipis. Pada penelitian ini, dilakukan fabrikasi termoelektrik lapisan tipis tipe N menggunakan material Zink Oxide (ZnO) di doping dengan Al2O3. Massa ZnO yang diperlukan sebanyak 20.680 gram dan Al2O3 10.079 gram. Proses fabrikasi lapisan tipis dilakukan menggunakan mesin DC Magnetron Sputtering. Tahapan-tahapan dalam melakukan penelitian ini terbagi ke dalam tiga tahapan utama yakni sintesis, fabrikasi (sputtering), dan pengujian. Proses sputtering dilakukan selama 10 menit dan substrat yang digunakan yakni kaca. Pengujian yang dilakukan yakni pengujian ketebalan menggunakan Tolansky Apparatus, pngujian XRD untuk mengetahui fasa yang terbentuk, pengujian ZEM-3 untuk mengetahui resistivitas, Koefisien Seebeck, dan power factor. Berdasarkan pengujian yang dilakukan, diperoleh ketebalan dari lapisan tipis yang terbentuk yakni 74.72 nm. Nilai Koefisien Seebeck dari lapisan tipis yang terbentuk semakin bertambah seiring kenaikan suhu sehingga dapat disimpulkan bahwa material AZO baik digunakan untuk aplikasi termoelektrik pada rentang suhu 200-350 °C

    Fabrication of p-type (MCCO) thin film using DC magnetron sputtering as a preparator for thermoelectric module

    Get PDF
    Based on existing research, thermoelectric efficiency can be improved through material selection. In this study, the material used is CaCO₃ doped with Mn and Co₂O₃ to form CaCo3.5Mn0.5O9 material as a p-type thermoelectric material. The substrate used is glass. The stages in this research are material synthesis, sputtering process using DC Magnetron Sputtering machine to form thin films, and testing. The synthesis process includes grinding, calcination, and sintering. Grinding is done using a Ball Mill machine with a rotation speed of 250 rpm for 5 hours. Furthermore, the calcination step was carried out by heating the sample into a furnace at a temperature of 800°C for 10 hours. Then the sintering process was carried out at a temperature of 850°C for 12 hours. After the synthesis process is complete, enter the sputtering process using a DC Magnetron Sputtering machine for approximately 10 minutes. The gas used in this research is Argon (Ar). After the sputtering process was carried out, several tests appeared, such as the XRD test to determine the type of crystal, the ZEM-3 test to determine the Seebeck coefficient and resistivity, the thickness of the thin film formed, and the power factor test to determine the maximum voltage and power generated by the module formed. Several power factor test results were obtained, consisting of 107 μW/mK² at 100°C, 108 μW/mK² at 200°C, and 332 μW/mK² at 300°C and a thickness of 90.34 nm

    Studi Model Turbulensi pada Vertical Axis Water Turbine (VAWT) Menggunakan Metode Computational Fluid Dynamics (CFD)

    No full text
    Penentuan model turbulen memiliki peranan penting dalam proses simulasi computational fluid dynamics (CFD). Beberapa macam model turbulen berdasarkan viskositas eddy dipakai agar waktu komputasi lebih singkat. VAWT tipe Darrieus dengan profil NACA 633-18 digunakan dalam penelitian ini. Simulasi CFD 2-dimensi dengan ketelitian tinggi dilakukan secara transient menggunakan pertambahan sudut azimut sebesar 10. Komputasi dilakukan hingga beberapa kali revolusi sampai didapat perubahan koefisien daya (Cp) akhir kurang dari 5%. Nilai y+ kurang dari 1 diberikan pada daerah dekat trailing edge dipermukaan foil. Variasi model turbulen yang dibandingkan diaantaranya adalah Spalart-Allmaras (S-A), realizable k-ɛ, Shear Stress Transport (SST) k-ω dan transition SST k-ω. Kurva Cp-TSR seluruh variasi model turbulen memiliki perilaku yang mirip, kecuali SST k-ω. Matrik kesesuaian hasil simulasi CFD pada vertical axis turbine (VAWT) dipresentasikan dalam bentuk error relatif terhadap data eksperimental. Hasil simulasi menunjukkan bahwa realizable k-ɛ memberikan Cp yang paling akurat, sedangkan model turbulens Spalart-Allmaras memiliki eror paling besar. Penggunaan transition SST k-ω yang mampu memperhitungkan efek aliran transisi dan intermitensi turbulen memberikan akurasi baik namun kurang memuaskan pada TSR tinggi

    The Training of Making Graphical User Interface (GUI) Using Python for Teachers and Students of Engineering Vocational School in Purwakarta

    No full text
    The purpose of this community service activity is to introduce the Python programming language to teachers and students of vocational school in Purwakarta exploiting an application to create a simple graphical user interface (GUI). Python is a programming language that is currently trending. The training was carried out in 3 stages, namely preparation, implementation and evaluation. As a result, participants were able to follow this training well and were able to create their own version of a simple GUI. Participants were also able to integrate their GUI with Arduino. After this activity, participants are expected to be able to explore how to make simple GUI using the modules that have been given

    KIMI.AR APPLICATION FOR EASIER AND INTERACTIVE CHEMISTRY LEARNING

    No full text
    Chemistry is a crucial subject since it covers the structure and makeup of the world around us. However, chemistry is frequently cited as a subject that students dislike. Most secondary school pupils believe that chemistry is difficult, uninteresting, and unimportant. Therefore, an improvement in learning technic is needed. An application called KIMI.AR was created in this research. KIMI.AR is a learning media in the form of a mobile-based augmented reality application regarding elements and the formation of chemical reactions that are expected to solve high school students' problems in the chemistry learning process. What makes the KIMI.AR application better than other chemistry learning applications is the focus on the displayed material according to the user's level and displaying descriptions in addition to 3D visualization that students can access through their respective Android devices. So, through the KIMI.AR application, learning chemistry becomes easier and more interesting
    corecore