7 research outputs found

    Novel design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer for drying tomatoes in Pakistan

    No full text
    The process of drying agricultural products for food preservation is a difficult task that requires a significant amount of energy. The increasing cost and depletion of fossil fuels have led to the development of a food dryer that utilizes renewable energy sources. This research paper proposes the design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer (IFCDISD) at the Solar Energy Research Lab at USPCAS-E, NUST Pakistan. Tomatoes were chosen as the test product due to their importance and widespread consumption. The drying process involves slicing the tomatoes and placing them on the IFCDISD rack, where a desiccant called calcium chloride (CaCl2) is integrated into the dryer. The experiments were conducted during both sunshine (SS) hours and Off-sunshine (OSS) hours. The IFCDISD operates using sunlight during SS hours and utilizes the absorbed heat of CaCl2 in OSS hours via a forced DC brushless fan powered by battery charged thro solar panel. The tomatoes were weighed before and after each drying mode, and the moisture removal was calculated. The results show that the dryer efficiency was 50.14 % on day 1, 66 % on day 2, and an overall efficiency of 58.07 %. The moisture content removal was 42.858 % on day 1, 22.9979 % on day 2, and an overall moisture content removal of 58.07 %. Moreover, the payback period is 5.1396 and the carbon mitigation was recorded as 2.0335, and the earned carbon credit was recorded as 11559.6

    Synthesis of PVP-capped trimetallic nanoparticles and their efficient catalytic degradation of organic dyes

    No full text
    The study proposes a simple and efficient way to synthesize a heterogeneous catalyst that can be used for the degradation of organic dyes. A simple and fast chemical process was employed to synthesize Au: Ni: Co tri-metal nanohybrid structures, which were used as a catalyst to eliminate toxic organic dye contamination from wastewater in textile industries. The catalyst's performance was tested by degrading individual dyes as well as mixtures of dyes such as methylene blue (MB), methyl orange (MO), methyl red (MR), and Rose Bengal (RB) at various time intervals. The experimental results show the catalytic high degradation efficiency of different dyes achieving 72-90% rates in 29 s. Moreover, the material displayed excellent recycling stability, maintaining its degradation efficiency over four consecutive runs without any degradation in performance. Overall, the findings of the study suggest that these materials possess efficient catalytic properties, opening avenues toward their use in clean energy alternatives, environmental remediation, and other biological applications
    corecore