32 research outputs found

    A computational view of the brain plasticity at rest

    Get PDF
    Even when the human brain is at rest, its activity continues to change spontaneously. We know very little about the neuroanatomical structures and the biological mechanisms involved. Such knowledge is important for understanding human perception and brain changes, both in healthy people and in disease. Therefore, the overall aim of my research was to expand our understanding of the biological and computational mechanisms underlying the plasticity of spontaneous human brain activity. I specifically focused my research on developing methods to analyze small-scale interactions between visual brain regions and large-scale interactions at the level of brain networks. A commonly used tool for brain research in humans is functional magnetic resonance imaging. This allows researchers to register brain activity in a non-invasive way and in a relatively short time, also in people who are in a resting state (rs-fMRI). Based on the measured activity, the functional relationships between different brain regions can be mapped without the need to present a stimulus. Another advantage is that rs-fMRI requires very little effort from the participant. Together, this makes rs-fMRI very useful to investigate the consequences of neuro-ophthalmic diseases on the brain, even at an advanced stage (eg in case of glaucoma in near-blindness). Therefore, in my dissertation, I focused on the use of rs-fMRI. In my dissertation, I demonstrate the fundamental and clinical relevance of measuring changes in spontaneous brain activity using rs-fMRI. The new methods that I have developed make it possible to investigate small-scale and large-scale functional connections in the brain. Moreover, they make it easier to apply rs-fMRI clinically in both the early and later stages of a disease. My methods can help future studies to increase our understanding of the functional connections of the healthy visual cortex and changes therein due to disease. They enable researchers to translate their knowledge about how the brain works into new, sophisticated diagnostic applications and therapeutic interventions

    Local neuroplasticity in adult glaucomatous visual cortex

    Get PDF
    The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.</p

    Assessing Uncertainty and Reliability of Connective Field Estimations From Resting State fMRI Activity at 3T

    Get PDF
    Connective Field (CF) modeling estimates the local spatial integration between signals in distinct cortical visual field areas. As we have shown previously using 7T data, CF can reveal the visuotopic organization of visual cortical areas even when applied to BOLD activity recorded in the absence of external stimulation. This indicates that CF modeling can be used to evaluate cortical processing in participants in which the visual input may be compromised. Furthermore, by using Bayesian CF modeling it is possible to estimate the co-variability of the parameter estimates and therefore, apply CF modeling to single cases. However, no previous studies evaluated the (Bayesian) CF model using 3T resting-state fMRI data. This is important since 3T scanners are much more abundant and more often used in clinical research compared to 7T scanners. Therefore in this study, we investigate whether it is possible to obtain meaningful CF estimates from 3T resting state (RS) fMRI data. To do so, we applied the standard and Bayesian CF modeling approaches on two RS scans, which were separated by the acquisition of visual field mapping data in 12 healthy participants. Our results show good agreement between RS- and visual field (VF)- based maps using either the standard or Bayesian CF approach. In addition to quantify the uncertainty associated with each estimate in both RS and VF data, we applied our Bayesian CF framework to provide the underlying marginal distribution of the CF parameters. Finally, we show how an additional CF parameter, beta, can be used as a data-driven threshold on the RS data to further improve CF estimates. We conclude that Bayesian CF modeling can characterize local functional connectivity between visual cortical areas from RS data at 3T. Moreover, observations obtained using 3T scanners were qualitatively similar to those reported for 7T. In particular, we expect the ability to assess parameter uncertainty in individual participants will be important for future clinical studies

    Binocular Integrated Visual Field Deficits Are Associated With Changes in Local Network Function in Primary Open-Angle Glaucoma:A Resting-State fMRI Study

    Get PDF
    In glaucoma participants, both structural and functional brain changes have been observed, but we still have insufficient understanding of how these changes also affect the integrity of cortical functional networks, and how these changes relate to visual function. This is relevant, as functional network integrity may affect the applicability of future treatments, as well as the options for rehabilitation or training. Here, we compare global and local functional connectivity in local and global brain networks between glaucoma and control participants. Moreover, we study the relationship between functional connectivity and visual field (VF) loss. For our study, 20 subjects with primary open-angle glaucoma (POAG) and 24 age-similar healthy participants were recruited to undergo an ophthalmic assessment followed by two resting-state (RS) (f)MRI scans. For each scan and for each group, the ROIs with eigenvector centrality (EC) values higher than the 95th percentile were considered the most central brain regions (“hubs”). Hubs for which we found a significant difference in EC in both scans between glaucoma and healthy participants were considered to provide evidence for network changes. In addition, we tested the notion that a brain region's hub function in POAG might relate to the severity of a participant's VF defect, irrespective of which eye contributed mostly to this. To determine this, for each participant, eye-independent scores were derived for: (1) sensitivity of the worse eye – indicating disease severity, (2) sensitivity of both eyes combined – with one eye potentially compensating for loss in the other, or (3) difference in eye sensitivity – potentially requiring additional network interactions. By correlating each of these VF scores and the EC values, we assessed whether VF defects could be associated with centrality alterations in POAG. Our results show that no functional connectivity disruptions were found at the global brain level in POAG participants. This indicates that in glaucoma global brain network communication is preserved. Furthermore, for the Lingual Gyrus, identified as a brain hub, we found a positive correlation between the EC value and the VF sensitivity of both eyes combined. The fact that reduced local network functioning is associated with reduced binocular VF sensitivity suggests the presence of local brain reorganization that has a bearing on functional visual abilities

    Micro-probing enables fine-grained mapping of neuronal populations using fMRI

    Get PDF
    The characterization of receptive field (RF) properties is fundamental to understanding the neural basis of sensory and cognitive behaviour. The combination of non-invasive imaging, such as fMRI, with biologically inspired neural modelling has enabled the estimation of population RFs directly in humans. However, current approaches require making numerous a priori assumptions, so these cannot reveal unpredicted properties, such as fragmented RFs or subpopulations. This is a critical limitation in studies on adaptation, pathology or reorganization. Here, we introduce micro-probing (MP), a technique for fine-grained and largely assumption free characterization of multiple pRFs within a voxel. It overcomes many limitations of current approaches by enabling detection of unexpected RF shapes, properties and subpopulations, by enhancing the spatial detail with which we analyze the data. MP is based on tiny, fixed-size, Gaussian models that efficiently sample the entire visual space and create fine-grained probe maps. Subsequently, we derived population receptive fields (pRFs) from these maps. We demonstrate the scope of our method through simulations and by mapping the visual fields of healthy participants and of a patient group with highly abnormal RFs due to a congenital pathway disorder. Without using specific stimuli or adapted models, MP mapped the bilateral pRFs characteristic of observers with albinism. In healthy observers, MP revealed that voxels may capture the activity of multiple subpopulations RFs that sample distinct regions of the visual field. Thus, MP provides a versatile framework to visualize, analyze and model, without restrictions, the diverse RFs of cortical subpopulations in health and disease.</p

    Visual Field Reconstruction Using fMRI-Based Techniques

    Get PDF
    Purpose: To evaluate the accuracy and reliability of functional magnetic resonance imaging (fMRI)-based techniques to assess the integrity of the visual field (VF). Methods: We combined 3T fMRI and neurocomputational models, that is, conventional population receptive field (pRF) mapping and a new advanced pRF framework "microprobing" (MP), to reconstruct the VF representations of different cortical areas. To demonstrate their scope, both approaches were applied in healthy participants with simulated scotomas and participants with glaucoma. For the latter group we compared the VFs obtained with standard automated perimetry (SAP) and via fMRI. Results: Using SS, we found that the fMRI-based techniques can detect absolute defects in VFs that are larger than 3°, in single participants, based on 12 minutes of fMRI scan time. Moreover, we found that the MP approach results in a less biased estimation of the preserved VF. In participants with glaucoma, we found that fMRI-based VF reconstruction detected VF defects with a correspondence to SAP that was decent, reflected by the positive correlation between fMRI-based sampling density and SAP-based contrast sensitivity loss (SAP) r2 = 0.44, P = 0.0002. This correlation was higher for MP compared to that for the conventional pRF analysis. Conclusions: The fMRI-based reconstruction of the VF enables the evaluation of vision loss and provides useful details on the properties of the visual cortex. Translational Relevance: The fMRI-based VF reconstruction provides an objective alternative to detect VF defects. It may either complement SAP or could provide VF information in patients unable to perform SAP

    Influence of electromagnetic radiation emitted by daily-use electronic devices on the Eyemate (R) system in-vitro:a feasibility study

    Get PDF
    Background: Eyemate® is a system for the continual monitoring of intraocular pressure (IOP), composed of an intraocular sensor, and a hand-held reader device. As the eyemate®-IO sensor communicates with the hand-held reader telemetrically, some patients might fear that the electronic devices that they use on a daily basis might somehow interfere with this communication, leading to unreliable measurements of IOP. In this study, we investigated the effect of electromagnetic radiation produced by a number of everyday electronic devices on the measurements made by an eyemate®-IO sensor in-vitro, in an artificial and controlled environment. Methods: The eyemate®-IO sensor was suspended in a sterile 0.9% sodium chloride solution and placed in a water bath at 37 °C. The antenna, connected to a laptop for recording the data, was positioned at a fixed distance of 1 cm from the sensor. Approximately 2 hrs of "quasi-continuous"measurements were recorded for the baseline and for a cordless phone, a smart-phone and a laptop. Repeated measures ANOVA was used to compare any possible differences between the baseline and the tested devices. Results: For baseline measurements, the sensor maintained a steady-state, resulting in a flat profile at a mean pressure reading of 0.795 ± 0.45 hPa, with no apparent drift. No statistically significant difference (p = 0.332) was found between the fluctuations in the baseline and the tested devices (phone: 0.76 ± 0.41 hPa; cordless: 0.787 ± 0.26 hPa; laptop: 0.775 ± 0.39 hPa). Conclusion: In our in-vitro environment, we found no evidence of signal drifts or fluctuations associated with the tested devices, thus showing a lack of electromagnetic interference with data transmission in the tested frequency ranges

    Foveal pRF properties in the visual cortex depend on the extent of stimulated visual field

    Get PDF
    Previous studies demonstrated that alterations in functional MRI derived receptive field (pRF) properties in cortical projection zones of retinal lesions can erroneously be mistaken for cortical large-scale reorganization in response to visual system pathologies. We tested, whether such confounds are also evident in the normal cortical projection zone of the fovea for simulated peripheral visual field defects. We applied fMRI-based visual field mapping of the central visual field at 3 T in eight controls to compare the pRF properties of the central visual field of a reference condition (stimulus radius: 14°) and two conditions with simulated peripheral visual field defect, i.e., with a peripheral gray mask, stimulating only the central 7° or 4° radius. We quantified, for the cortical representation of the actually stimulated visual field, the changes in the position and size of the pRFs associated with reduced peripheral stimulation using conventional and advanced pRF modeling. We found foveal pRF-positions (≤3°) to be significantly shifted towards the periphery (p<0.05, corrected). These pRF-shifts were largest for the 4° condition [visual area (mean eccentricity shift): V1 (0.9°), V2 (0.9°), V3 (1.0°)], but also evident for the 7° condition [V1 (0.5°), V2 (0.5°), V3 (0.9°)]. Further, an overall enlargement of pRF-sizes was observed. These findings indicate the dependence of foveal pRF parameters on the spatial extent of the stimulated visual field and are likely associated with methodological biases and/or physiological mechanisms. Consequently, our results imply that, previously reported similar findings in patients with actual peripheral scotomas need to be interpreted with caution and indicate the need for adequate control conditions in investigations of visual cortex reorganization

    Implanted Microsensor Continuous IOP Telemetry Suggests Gaze and Eyelid Closure Effects on IOP-A Preliminary Study

    Get PDF
    PurposeTo explore the effect of gaze direction and eyelid closure on intraocular pressure (IOP).MethodsEleven patients with primary open-angle glaucoma previously implanted with a telemetric IOP sensor were instructed to view eight equally-spaced fixation targets each at three eccentricities (10°, 20°, and 25°). Nine patients also performed eyelid closure. IOP was recorded via an external antenna placed around the study eye. Differences of mean IOP between consecutive gaze positions were calculated. Furthermore, the effect of eyelid closure on gaze-dependent IOP was assessed.ResultsThe maximum IOP increase was observed at 25° superior gaze (mean ± SD: 4.4 ± 4.9 mm&nbsp;Hg) and maximum decrease at 25° inferonasal gaze (-1.6 ± 0.8 mm&nbsp;Hg). There was a significant interaction between gaze direction and eccentricity (P = 0.003). Post-hoc tests confirmed significant decreases inferonasally for all eccentricities (mean ± SEM: 10°: -0.7 ± 0.2, P = 0.007; 20°: -1.1 ± 0.2, P = 0.006; and 25°: -1.6 ± 0.2, P = 0.006). Eight of 11 eyes showed significant IOP differences between superior and inferonasal gaze at 25°. IOP decreased during eyelid closure, which was significantly lower than downgaze at 25° (mean ± SEM: -2.1 ± 0.3 mm&nbsp;Hg vs. -0.7 ± 0.2 mm&nbsp;Hg, P = 0.014).ConclusionsOur data suggest that IOP varies reproducibly with gaze direction, albeit with patient variability. IOP generally increased in upgaze but decreased in inferonasal gaze and on eyelid closure. Future studies should investigate the patient variability and IOP dynamics

    Sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood

    Get PDF
    : Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (β = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms
    corecore