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In glaucoma participants, both structural and functional brain changes have been

observed, but we still have insufficient understanding of how these changes also affect

the integrity of cortical functional networks, and how these changes relate to visual

function. This is relevant, as functional network integrity may affect the applicability of

future treatments, as well as the options for rehabilitation or training. Here, we compare

global and local functional connectivity in local and global brain networks between

glaucoma and control participants. Moreover, we study the relationship between

functional connectivity and visual field (VF) loss. For our study, 20 subjects with primary

open-angle glaucoma (POAG) and 24 age-similar healthy participants were recruited to

undergo an ophthalmic assessment followed by two resting-state (RS) (f)MRI scans. For

each scan and for each group, the ROIs with eigenvector centrality (EC) values higher

than the 95th percentile were considered the most central brain regions (“hubs”). Hubs

for which we found a significant difference in EC in both scans between glaucoma

and healthy participants were considered to provide evidence for network changes.

In addition, we tested the notion that a brain region’s hub function in POAG might

relate to the severity of a participant’s VF defect, irrespective of which eye contributed

mostly to this. To determine this, for each participant, eye-independent scores were

derived for: (1) sensitivity of the worse eye – indicating disease severity, (2) sensitivity

of both eyes combined – with one eye potentially compensating for loss in the other,

or (3) difference in eye sensitivity – potentially requiring additional network interactions.

By correlating each of these VF scores and the EC values, we assessed whether VF

defects could be associated with centrality alterations in POAG. Our results show that

no functional connectivity disruptions were found at the global brain level in POAG

participants. This indicates that in glaucoma global brain network communication is

preserved. Furthermore, for the Lingual Gyrus, identified as a brain hub, we found a
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positive correlation between the EC value and the VF sensitivity of both eyes combined.

The fact that reduced local network functioning is associated with reduced binocular

VF sensitivity suggests the presence of local brain reorganization that has a bearing on

functional visual abilities.

Keywords: visual field defects, HFA, resting-state fMRI, POAG, functional connectivity, eigenvector centrality,

functional networks

INTRODUCTION

Glaucoma is a neurodegenerative ophthalmic disease, which is
characterized, amongst others, by reduced retinal thickness and
loss of visual field (VF) sensitivity. It is one of the leading
causes of irreversible blindness, and in 2020 approximately 76
million people are affected by this disease, a number that is
only estimated to increase in the coming years (Quigley and
Broman, 2006; Tham et al., 2014). Thus, it is important to
better understand the pathogenesis of glaucoma, in order to
improve its diagnosis, prognosis and the possible treatment
options, all of which will ultimately improve the quality of
life of patients. While in the clinical setting the degenerative
physical damage is generally observed in the eye and in the
optic nerve, recent brain imaging studies have shown that this
is not limited to these but extends intracranially along the visual
pathways and into the visual cortex (Gupta and Yücel, 2007;
Hernowo, 2012; Nucci et al., 2013; Haykal et al., 2021). It has
been shown that structural and functional changes in the brain
are involved in glaucoma. Structural changes were observed in
several studies that compared glaucoma participants to healthy
controls, showing altered white matter tracts and gray matter
atrophy in brain areas involved in visual processing (Chen et al.,
2013; Frezzotti et al., 2014; Wang et al., 2016a; Giorgio et al.,
2018). Moreover, several functional magnetic resonance imaging
(fMRI) studies have shown altered cortical activity in glaucoma
patients (Qing et al., 2010; Gerente et al., 2015; Jiang et al., 2017;
Wang et al., 2020). It is largely unknown how these anatomical
and functional changes affect the integrity of cortical functional
networks and how, in turn, changes in these networks affect
visual functioning of patients. Understanding this may affect
the applicability of future treatments; the modulation of brain
activity could be integrated as an option for rehabilitation or
training. Despite this, there have been very few studies assessing
the local functional connectivity (FC) between specific regions of
interest (ROI) in the brain of glaucoma participants. Moreover,
in most studies, fMRI was applied while observers performed a
task, which means that patients’ vision impairment could have
affected both performance and imaging results (Qing et al., 2010;
Gerente et al., 2015). It has been shown that using resting state
(RS) blood oxygenation level-dependent (BOLD) signals is an
effective way in assessing neuronal activity, and specifically, brain
functional changes (van den Heuvel and Hulshoff Pol, 2010).
RS is a particularly attractive approach to study populations
with neuro-ophthalmic diseases like glaucoma. Since the patients
do not need to perform any task, it can be used even when
they are severely visually impaired as their impairment at the
level of the eye will not affect the results (Frezzotti et al.,

2014, 2016; Wang et al., 2016b, 2017; Giorgio et al., 2018;
Carvalho et al., 2019). By examining which areas of the brain
are activated synchronously during RS scans, it is possible to
cluster certain areas into resting-state networks (RSN) (van den
Heuvel and Hulshoff Pol, 2010). These results indicate that the
brain consists of multiple cooperative systems or networks. The
known RSNs are named based on their function and include,
amongst others the visual network (VN), the salience network
(SN), dorsal attention network (DAN), and the default mode
network (DMN). By examining FC within and between these
predefined networks, it is possible to determine to what extent a
pathology, such as glaucoma, affects the integrity of a participant’s
brain networks.

The first aim of our study is to determine network
integrity in glaucoma. For this, we characterized functional
network activity over time and identified the most central
brain areas (“hubs”) in glaucoma patients and control subjects.
Fast eigenvector centrality mapping (fECM) was applied to
each time course to attribute an eigenvector centrality (EC)
value to each predefined region of interest (ROI). For each
scan and for each group, the ROIs with EC values higher
than the 95th percentile were considered the most central
brain regions (“hubs”). Hubs for which we found a significant
difference in EC between glaucoma and healthy in both scans
were considered to provide evidence for network changes.
Importantly, as mentioned before, by basing this analysis
on resting-state (RS) fMRI data, we assess network integrity
independently from the quality of the input coming via
the eyes.

Our second aim is to investigate the different ways in which
the VF could affect the hub function of networked brain areas.
Therefore, in our study we defined three different behavioral
scores based on VF sensitivity. These were calculated based
on the notion that a brain region’s hub function might relate
to: (1) the sensitivity of the worse eye – indicating disease
severity, calculated by selecting the mean deviation (MD) value
of the worse eye (WorseMD); (2) the sensitivity of both eyes
combined – with one eye potentially compensating for loss in
the other, calculated by taking the best value from overlapping
locations in the total deviation maps of left and right eye and
then calculating the mean of these values (Binocular Integrated
Visual Field – BIVF); or (3) a difference in eye sensitivity
– requiring additional network interactions, calculated as the
absolute difference between the MD values of the right and left
eye (AbsDiffMD). Next, we calculated the correlation between
these behavioral scores and the centrality of the brain regions
identified as being most influential in either glaucoma or
control participants.
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MATERIALS AND METHODS

Study Population
Twenty patients with primary open-angle glaucoma (POAG) and
twenty-four control participants were included. Patients were
invited from the glaucoma database (Heeg and Jansonius, 2009)
of the University Medical Center Groningen (UMCG); healthy
controls responded to advertisements distributed around the
UMCG and the city of Groningen. Participants’ demographics
are detailed in Table 1. Patients and controls did not differ
regarding age (p= 0.3). Participants were invited to the screening
ophthalmic session only if they passed our exclusion criteria, i.e.
had no past or current psychiatric disorder; no claustrophobia;
had no MRI incompatible implants or non-MRI safe tattoos,
and did not use recreational drugs or medications (which may
influence neurodegenerative progression). Prior to the screening
and experiment, participants signed an informed consent form.
The study protocol was approved by the ethics board of the
University Medical Center Groningen (UMCG). The study
followed the tenets of the Declaration of Helsinki.

Ophthalmic Data Collection
All participants took part in an ophthalmic session, which
included visual acuity (VA) examination, intraocular pressure
(IOP) measurement, optical coherence tomography (OCT), and
VF assessment using standard automated perimetry (SAP).

Glaucoma participants had, based on previous regular
appointments not related to this study, been diagnosed with
POAG in at least one of their eyes and have a SAPmean deviation
(MD) of−2 dB or lower, as measured with the Humphrey Visual
Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA, USA; SITA
FAST strategy with either the 30–2 or 24–2 grid). Participants
were included only if their VF loss was strictly due to glaucoma.
They also had to have abnormal values in at least one eye for the
thickness of the retinal nerve fiber layer (RNFL), as assessed by
OCT (Canon HS-100, software version 4.1.0, Tokyo, Japan).

Healthy participants were required to have a best-corrected
VA of at least 0.1 logMar (0.8 decimal) in both eyes. Their
IOP had to be below 21 mmHg, as assessed with a non-contact

tonometer (Tonoref II, Nidek, Aichi, Japan). VF integrity was
verified using the HFA, with the MD required to be above −2
dB. Their OCT assessment had to show a normal thickness of the
RNFL in both eyes (no clock hours below 1st percentile allowed).

MRI and fMRI Data Acquisition
Scanning was carried out on a 3 Tesla Siemens Prisma MRI-
scanner using a 64-channel receiving head coil. A T1-weighted
scan (voxel size, 1 mm3; matrix size, 256 × 256 × 256) covering
the whole-brain was recorded to chart each participant’s cortical
anatomy. Padding was used for a balance between comfort and
reduction of head motion. The functional scans were collected
using standard EPI sequence with 260 volumes (TR, 1,350ms;
TE, 30ms; voxel size, 2 × 2 × 3 mm3, flip angle of 68◦; matrix
size, 94 × 94 × 45). Two fMRI resting-state scans were taken in
a room in complete darkness for each participant. During both
resting-state functional scans, participants were asked to close
their eyes, relax, not think about anything in particular, and to
try not to move.

fMRI Data Analyses
Image pre-processing, FC, ECM and statistical analyses were
performed using SPM12 (Wellcome Department of Imaging
Neuroscience, London, UK), fastECM toolbox (Wink et al.,
2012), MarsBaR Region of interest (ROI) toolbox (http://
marsbar.sourceforge.net/) and customized scripts, implemented
in Matlab 2016b (The Mathworks Inc., Natick, Massachusetts). A
related toolbox containing the code will be made available via the
website www.visualneuroscience.nl.

Image Preprocessing
For each subject, the structural magnetic resonance image was
co-registered and normalized against the Montreal Neurological
Institute (MNI) template and segmented in order to obtain
white matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF) probability maps in the MNI space. FMRI data were
spatially realigned, co-registered to the MNI-152 EPI template
and subsequently normalized utilizing the segmentation option
for EPI images in SPM. All normalized data were denoised

TABLE 1 | Demographic and clinical information of participants.

POAG (N = 20) HC (N = 24) p

Average Standard deviation Average Standard deviation

Age (years) 70.9 8.7 68.1 7.4 0.3

Gender (M/F) 10/10 16/8 –

VA (R/L; decimal) 0.9/0.9 0.4/0.3 1.1/1.0 0.2/0.3 0.05/0.04

VA (better/worse; decimal) 1.0/0.8 0.4/0.3 1.0/1.1 0.3/0.3 0.50/0.01

IOP (R/L; mmHg) 13.5/13.7 2.7/3.9 13.2/13.6 2.9/3.3 0.43/0.45

OCT (R/L; µm) RNFL 74.0/68.4 15.0/16.3 97.8/98.7 8.7/8.1 0.00/0.00

OCT (better/worse; µm) RNFL 74.3/68.1 15.6/15.6 98.6/97.6 9.1/9.5 0.00/0.00

HFA MD (R/L; dB) −7.0/−9.0 8.7/8.3 0.0./0.1 1.3/1.0 0.00/0.00

HFA ND (better/worse; dB) −4.0/−12.0 5.2/9.2 0.5/−0.4 0.9/1.2 0.00/0.00

POAG, primary open-angle glaucoma; HC, healthy controls; VA, visual acuity; IOP, intraocular pressure (with treatment for glaucoma); OCT RNFL, optical coherence tomography, retinal

nerve fiber layer thickness; HFA MD, humphrey visual field analyzer, mean deviation; better/worse, eye selected based on better and worse HFA MD.
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using ICA-AROMA (Pruim et al., 2015). Additionally, spatial
smoothing was applied (8 millimeters) to the fMRI data. No
global signal regression was applied.

Based on the Power atlas coordinates (Power et al., 2011),
11 functional networks and associated 232 regions of interest
(ROI) were defined (5mm radius) using the MarsBar ROI
toolbox for SPM12 (Brett et al., 2002, n.d.). For each ROI, a
time-series was extracted by averaging across voxels per time
point. Due to their related functions, some of the networks
were excluded or modified: the sensory/somatomotor hand and
mouth networks were combined into one network, the cerebellar
network was excluded since our analysis focusedmore on cortical
structures and the uncertain network was completely excluded
from the analysis due to interpretation difficulties – due to the
nature of uncertain networks, it is unknown what function each
specific ROI pertains to. This left 131 ROIs spread over seven
networks: DMN, memory network, visual network, salience
network, ventral attention network and dorsal attention network.

Prewhitening
To facilitate statistical inference, data were “pre-whitened” by
removing the estimated autocorrelation structure in a two-step
GLM procedure (Monti, 2011; Bright and Murphy, 2015). In
the first step, the raw data were filtered against the 6 motion
parameters (3 translations and 3 rotations). Using the resulting
residuals, the autocorrelation structures present in the data were
estimated using an Auto-Regressive model of order 1 [AR(1)]
and then removed from the raw data. Next, the realignment
parameters, white matter (WM) and cerebrospinal fluid (CSF)
signals were removed as confounders on the whitened data.

Functional Connectivity Analysis
For each participant, the pairwise temporal Pearson correlation
between ROIs was calculated and a Fisher’s z-transformation was
applied. The ROI’s z-values (hereafter: FC values) were averaged
across participants. Then, the median group FC-values were

used for the whole-brain analysis and used to compare the FC-
values between groups using a family-wise error corrected (FWE)
permutation test. Permuting the participant’s group labels was
repeated 10,000 times per participant, p ≤ 0.05 was considered
statistically significant.

Eigenvector Centrality Analysis
To determine the most important hubs of the predefined
networks, fast ECM (Wink et al., 2012) was performed on the
defined ROI time course data per subject. The ECM method
builds on the concept of node centrality, which characterizes
functional networks active over time and attributes a voxel-wise
centrality value to each ROI. Such a value is strictly dependent
on the sum of centrality properties of the direct neighbor nodes
within a functional network. In the fast ECM toolbox (Wink
et al., 2012), ECM is estimated from the adjacency matrix, which
contains the pairwise correlation between the ROIs. To obtain a
real-valued EC value, we added+1 to the values in the adjacency
matrix. Several EC values can be attributed to a given node, but
only the eigenvector with the highest eigenvalue (EV) will be
used for further analyses. The highest EV values were averaged
across subjects at group level. Based on these values, influential
ROIs, i.e. the hubs (van den Heuvel and Sporns, 2011; Mišić
et al., 2015; Betzel et al., 2016), can then be identified. Per group,
only ROIs with EC coefficients higher than the 95th percentile
(5% highest) were considered the most central and therefore
used in the following analyses. Based on literature, the 95th
percentile was chosen as an arbitrary threshold (Invernizzi et al.,
2019). Furthermore, we quantify possible differences between
influential hubs across groups by permuting labels with 10,000
time repetitions. ROIs with p≤ 0.05 were considered statistically
significant and therefore, categorized as well as influential hubs.
FWE correction was applied for the number of group level
comparisons, but not for the total number of ROIs analyzed. Only
FWE corrected p-values are reported.

In addition, a proxy distribution for the null hypothesis (H0)
was obtained by generating 1,000 times surrogate BOLD time

FIGURE 1 | Example of binocular integrated visual field calculation. This image shows the sensitivity maps from the original HFA output, for both left and right eyes

respectively, and the resulting map for the BIVF, in case the eccentricity of the visual field is examined up to 30◦ away from fixation. For each overlapping location

between left and right eye, the highest value was selected (circled in red). The BIVF was calculated as the average of the selected values of each eye’s sensitivity map.
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Demaria et al. Network Function Changes in Glaucoma

series using the iterative amplitude adjusted Fourier transform
method (iAAFT; Schreiber and Schmitz, 1996; Räth andMonetti,
2009). In this way, correlations between ROIs were removed; the
null distribution represents the amount of centrality obtained
when no functional communication is present in the brain. Note
that the null distribution of the ECM is not centered at zero,
as EC values are forced to be positive real-valued. To define
the confidence intervals of each EC value estimated per ROI,
a bootstrap technique (across time-point) was used at group
level in parallel to resample the filtered fMRI data. To support
visualization, a Gaussian distribution was fitted to both bootstrap
and surrogate distributions.

Behavioral Scores
The behavioral scores were derived from the HFA original
output by: (1) selecting the mean deviation (MD) value of
the worse eye (WorseMD); (2) taking the highest value from
overlapping locations in the total deviation maps of the left
and the right eye and then calculating the mean of these values
(Figure 1; Binocular Integrated Visual Field – BIVF) (Crabb
and Viswanathan, 2005); (3) calculating the absolute difference
between the MD values of the right and left eye (AbsDiffMD).
Due to fatigue, 17 of the 24 healthy controls participants and 19
of the 20 participants with glaucoma completed the study-related
visual field assessment that enabled us to calculate these scores.

Hub Selection for Correlation Analysis
For the correlation analysis of EC values to the behavioral
scores, our selection of ROIs was done as follows. ROIs were
included that were identified as hub based on the data of the
glaucoma participants (RS1 or RS2) or the data of the control
participants (RS1 or RS2). In other words, for this analysis,
the ROIs were selected only based on them fulfilling the hub
criterion per scan and not on a difference between the control
and glaucoma participants.

In the analysis, each behavioral score of a participant (Section
Image Preprocessing) was correlated with their EC value per

ROI (separately for each scan) using Spearman’s correlation. A
correlation of p ≤ 0.05 was considered significant.

RESULTS

Whole Brain Connectivity Analysis
To compare whole brain connectivity between control and
glaucoma participants, we plotted the averaged FC scores across
all ROIs (Figure 2A) and the average EC values per ROI in both
groups (Figures 2B,C, for controls and glaucoma participants,
respectively). No significant differences were found with any of
these analyses (RS1: HC vs. POAG, p= 0.59; RS2: HC vs. POAG,
p= 0.089).

Moreover, no significant differences were found with either
the whole-brain-within or -between functional connectivity
network analyses for controls and glaucoma groups (for further
analyses see the Supplementary Figures S1–S3).

Identification of Influential Brain Areas
Based on the EC values averaged across participants, we identified
the 5% most central ROIs per group, which we refer to as
“hubs” (Figure 3). For controls, hubs belonged to the Visual,
Salience, Ventral and Dorsal Attention networks. For POAG,
hubs belonged to the Visual, Salience, Default Mode, Ventral
and Dorsal Attention networks. Based on the first RS scan,
differences in EC between the POAG and controls did not
reach significance for any of these hubs. In the second RS scan,
differences reached significance for two hubs, both belonging to
the Salience Network (Insula, p= 0.023; Frontal Middle Gyrus, p
= 0.016 - Supplementary Figure S5).

To further explore and quantify the difference in EC value
between the healthy and glaucoma participants, bootstrap and
surrogate methods were applied to the EC values of the hubs
identified in both RS scans. Figure 4 shows the bootstrapped and
the surrogate EC distributions for a number of hubs present in
both RS scans for healthy and glaucoma groups (Figures 4A,B).
Furthermore, we are reporting in the Supplementary Material

the EC distributions for the two hubs for which differences

FIGURE 2 | Test-retest evaluation between RS scans for both FC and EC values. Panel (A) shows the histogram of the functional connectivity (FC) scores across all

ROIs computed for both RS scans for control (blue line and circles) and POAG (red line and circles) participants. The y-axis label “count” represents the number of

ROIs with a particular functional connectivity value. Panels (B,C) report the average EC values for control (blue) and POAG (red) groups, respectively. Each dot

represents the average EC value for a single ROI defined based on the Power atlas. The black line represents the linear fit applied to the data.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 January 2022 | Volume 13 | Article 744139
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FIGURE 3 | Functional network hubs identified in either of the two RS scans. The figure shows all identified hubs, i.e. the ROIs with 5% highest eigenvector centrality

in either of the RS scans in either group - healthy and POAG participants. The tables below the figures list the full name of the ROI, the ROI’s hemisphere, the name

(Continued)
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FIGURE 3 | of the ROI’s functional NW and the NW color code. ROI, region of interest; CUN, cuneus; IFT, frontal inferior triangularis; ORB, frontal medial orbital;

FrontMid, frontal middle; FFG, fusiform gyrus; INS, insula; INS, insula anterior; LIG, lingual gyrus; OccLat, occipital lateral; OccMid, occipital middle; PreCG,

precuneus; IFG/IFGtriang, rostral frontal gyrus; TempInf, temporal inferior; TempSup, temporal superior; STG, temporal superior gyrus. Hemisphere: R, right; L, left.

NW, network; DMN, default mode network; Salience, dorsal attention; Visual, ventral attention.

reached significance in RS2 (Insula and Frontal Middle Gyrus;
Supplementary Figure S5).

Correlations of EC of Hubs With Behavioral
Scores
The median behavioral scores were as follows. The Worse MD
score for the participants with glaucoma was−12.11 [IQR 13.60]
dB, while for controls it was −0.31 [IQR 0.82] dB. The BIVF
score for the participants with glaucoma was −2.63 [IQR 3.45]
dB, while for controls it was 0.79 [IQR 0.37] dB. The AbsDiffMD
score for the participants with glaucoma was 4.82 [IQR 6.65] dB
while for controls it was 0.75 [IQR 0.59] dB. For all identified
hubs, based on the data of the first RS scan we found significant
correlations between the EC values of the right Lingual Gyrus
(LIG) and the BIVF (p = 0.04), the AbsDiffMD (p = 0.03), and
theWorseMD (p= 0.04) and (Figure 5, top panels). Based on the
data of the second RS scan, of these correlations, the one between
the right Lingual Gyrus (LIG) and the BIVF reached significance
again (BIVF p= 0.05; AbsDiffMD p= 0.69; WorseMD p= 0.23;
Figure 5, bottom panels). In other words, only the correlation
between the right LIG and BIVF resulted in a reproducible
finding. The right LIG belongs to the Visual Network (Power
et al., 2011). In the Supplementary Materials, we report the
bootstrapped and surrogate distributions for the hubs that
showed no significant correlation between the EC values and the
behavioral scores are shown (Supplementary Figure S4).

DISCUSSION

This study has two main findings, one at the global and one at
the local brain level. First, in glaucoma, global brain network
communication is preserved. We conclude this based on an
absence of whole brain differences in functional connectivity
between glaucoma participants and controls. Secondly, in
glaucoma, local brain hub connectivity relates to functional visual
abilities. We conclude this because the hub function of the
Lingual Gyrus is associated with the sensitivity of the integrated
VF of both eyes. Below, we discuss these conclusions in more
detail as well as the implications for understanding cortical
functioning of glaucoma patients.

Global Brain Network Communication Is
Preserved in Glaucoma
No functional connectivity disruptions were found either within-
or between- functional networks of glaucoma participants and
controls. This is consistent with a previous study (Wang et al.,
2016b). Since global disruption of functional connectivity has
been found in other syndromes such as Alzheimer’s disease and
Parkinson’s disease (Pievani et al., 2011), these results support
the idea that glaucoma has a different neuropathogenesis. Several

other studies found functional changes at the level of single brain
areas in glaucoma, however some of these studies investigated
just a few specific vision-related brain areas, or focused only
on FC within a specific set of networks, not between different
networks (Dai et al., 2013; Frezzotti et al., 2014; Li et al., 2014;
Song et al., 2014; Wang et al., 2017; Giorgio et al., 2018; Trivedi
et al., 2019; Qu et al., 2020).

In our study, we found that, based on one of our RS scans, the
centrality of the insula and the frontal middle gyrus, both part
of the Salience Network, differed between glaucoma participants
and controls. Yet, this finding did not replicate in the other
scan. Overall, we conclude that the evidence for changed FC or
centrality in glaucoma is weak at best.

Reduced Centrality of the Lingual Gyrus Is
Associated With Reduced Functional
Vision
Based on a set criterion for their EC value, we identified a number
of brain areas as being hubs. For these hubs, we found that the
centrality of the right LIG related consistently to the sensitivity
of the binocular integrated VF (BIVF) of participants. While
the EC of a few other hubs (Insula and Frontal Middle Gyrus)
showed a correlation with one of the behavioral VF indices in
either one of the scans, only the correlation of the EC of the right
LIG with the sensitivity of the binocular integrated VF (BIVF)
reproduced in both scans. We can understand this result based
on two previous findings. First, the LIG is known for its role
in visuospatial processing and topographical recognition. It was
found that lesions in this area affect the ability of patients to
orient themselves (Takahashi and Kawamura, 2002; Mendez and
Cherrier, 2003). Secondly, glaucoma patients often report issues
in orientating and moving in their surroundings. Previously,
this self-perceived visual disability was shown to relate most
strongly to peripheral vision loss when expressed in terms of
the BIVF score (Crabb and Viswanathan, 2005). This implies
the centrality of the LIG directly relates to this functional visual
ability. It remains to be determined whether this relationship also
implies local reorganization of the LIG. The reduced centrality
of the LIG may either be a consequence of patients’ reduced
visual input, mediated by their reduced orientation and mobility
performance or a consequence of both. Irrespective, the fact that
we consistently find this relationship based on RS data acquired
in the absence of visual stimulation implies this altered centrality
of the LIG has a permanent basis, implying brain reorganization
has occurred.

Clinical Implications
The results in this study imply that network functionality poses
no limit to future treatment options. The central role of the LIG
suggests that future therapies, such as brain stimulation, could
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FIGURE 4 | EC values of various hubs present in both RS scan of both POAG and controls groups. Eigenvector centrality values of the hubs that were present in the

RS scans for healthy and glaucoma groups (dashed lines), bootstrapped distributions (solid and dotted lines) and surrogate distributions for healthy and glaucoma

(black lines) are reported for RS1 and RS2 in Panels (A,B), respectively. Note that the surrogate distributions for healthy and glaucoma participant groups are

overlapping and indicated by H0 in the figure legend. For all panels, “count” represents the eigenvector centrality values.
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FIGURE 5 | Correlation between the EC value of the Lingual Gyrus and three behavioral visual field scores. The panels show the relation between the three visual field

behavioral scores and the EC values of the Lingual Gyrus in RS1 (top row) and RS2 (bottom row). The black line indicates the zero for each behavioral score. The

behavioral visual field scores are BIVF (Binocular Integrated Visual Field): the MD of the integrated visual field of the left and right eye, Absolute Difference MD: the

absolute difference between the MD of the left and right eye, and the Worse MD: the lowest of the MD scores of either the left or right eye. The values reported in each

panel are Spearman’s correlation between the behavioral score and the EC values and the associated significance.

focus on this brain area, as its modulation may benefit glaucoma
patients (Sabel et al., 2020). Moreover, the notion that orientation
and mobility performance are also part of this equation could
support the introduction of cognition-based mobility training in
the treatment (Virgili and Rubin, 2010; Gunn et al., 2019).

Limitations and Future Studies
In this study, due to our relatively small sample size, we
could not meaningfully divide the group in smaller subgroups.
Consequently, in our glaucoma group, some participants had
early or mild glaucoma and VFs that were mostly intact, while
others had severe glaucoma and visual losses that caused a
near complete blindness in one eye. This spread in patient
characteristics was actually beneficial for our ability to relate
centrality to functional vision. However, it makes it harder to
detect more subtle patterns of reorganization. Future studies
on larger samples of patients might address the presence of
subtle functional connectivity changes at different glaucoma
stages. For example, it is known that in early POAG, the
brain goes through a stage where brain structures become
larger before they become atrophic (Williams et al., 2013). This
would result in compensatory changes in which neural activity
is initially suppressed and then enhanced at a later stage of
the disease (Johansen-Berg, 2007). Besides measuring the visual
fields, such studies should also consider integrally assessing or
querying patients on their mobility. Since our present cross-
sectional study cannot, future longitudinal studies in glaucoma

(Haykal et al., 2021) could help to establish plausible causal
relationships between behavioral and brain changes.

CONCLUSION

We found no consistent alterations in the global or local
functional networks of glaucoma participants. However, our
study did show that the integrity of the hub function of the LIG
relates to patients’ functional vision as expressed in their BIVF
score. Future studies are required to determine whether deficits
experienced by glaucoma patients in orientation and mobility are
related to this observation, and if so, whether they could be either
a consequence or a cause of changes in this brain area.
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