42 research outputs found
Influence of soil water content and atmospheric conditions on leaf water potential in cv. "Touriga Nacional" deep-rooted vineyards
Abstract In this study, the influence of soil and atmosphere
conditions on noon and basal leaf water potential of
vines ‘‘Touriga Nacional’’ in the Da˜o region submitted to
different irrigation treatments is analysed. Both indicators
showed to be dependent on environmental conditions at the
time of measurement. Leaf water potential at noon of fully
watered plants was linearly related with atmospheric conditions,
with values registered when vapour pressure deficit
(VPD) was higher than approximately 3 kPa being no
different from the values registered in stressed plants.
Therefore, this indicator cannot be reliably used to distinguish
different plant water stress levels when atmospheric
conditions induce high evaporative demands. The basal
leaf water potential (wb) was also influenced by VPD at the
time of measurement for all soil water conditions. In well
irrigated plants, it was even possible to establish a baseline
that can therefore be used to identify nonwater stressed
conditions (wb (MPa) = -0.062–0.0972 VPD (kPa),
r2 = 0.78). A good correlation was found between soil
humidity and wb. However, more than the average value of
the whole thickness of soil monitored, the wb values were dependent on the distribution of soil humidity, with the
plants responding to the presence of wet layers
Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)
Water potential is considered to be the “gold-standard” measure for plant water status determination. However, there are some discrepancies on how and at what time of the day water potential measurements should be performed in order to obtain meaningful information. The aim of this work is to evaluate the discrimination ability of water potential measurements in grapevines depending on the time of the day and of the measurement procedure (leaf vs. stem). To do so, a meta-analysis was performed using>78,000 measurements of water potential data obtained in field irrigation experiments, provided by 13 research teams working in this subject in Spain. For each measurement day and experiment, Discrimination Ratio (DR) was calculated and used to determine the discrimination ability of each method, and then pooled for comparison. The measurement procedure with the greatest DR can be hypothesised to be the most suitable under the average working conditions. Leaf water potential showed lower DR mean values than predawn or stem water potential. The climatic conditions and the cultivar may affect to the discrimination ability, although the abovementioned trend was always maintained. Leaf water potential in vineyards should therefore be replaced, as a general rule, by either stem or predawn water potential readings, without a clear pre-eminence of the performance of predawn and stem water potential measurements. Building a common dataset and its subsequent meta-analysis has been proved to be an efficient and robust tool to compare plant measurements, and should be implemented for other species and/or measurement procedures
The effects of applied water at various fractions of measured evapotranspiration on water relations and vegetative growth of Thompson Seedless grapevines
The effects of applied water at various fractions of measured evapotranspiration on water relations and vegetative growth of Thompson Seedless grapevines
Vegetative growth and water relations of Thompson Seedless grapevines in response to applied water amounts at various fractions of measured grapevine ETc were quantified. Treatments ranged from no applied water up to 1.4 times the water used by vines growing in a weighing lysimeter. All treatments were irrigated at the same frequency as the vines in the lysimeter (whenever they used 2 mm of water), albeit at their respective fraction. Soil water content and midday leaf water potential (Ψl) were measured routinely in four of the irrigation treatments across years. The amount of water depleted in the soil profile ranged from 190 mm for the 0.2 treatment in 1993 to no water depletion for the 1.4 treatment in 1992. The irrigation treatments significantly affected midday Ψl, total shoot length, leaf area per vine, pruning weights and trunk diameter; as applied water decreased so did vegetative growth. Pruning weights were a linear function of the seasonal, mean midday Ψl across growing seasons. The application of water amounts in excess of evapotranspiration negatively affected vegetative growth some of the years. A companion paper will demonstrate that over-irrigation can negatively affect reproductive growth of this grape cultivar due to excess vegetative growth
From vineyards to controlled environments in grapevine research: investigating responses to climate change scenarios using fruit-bearing cuttings
21 Pags.- 5 Tabls.- 6 Figs.This paper describes the use of fruit-bearing grapevine hardwood cuttings as a model system for grapevine research, translating some studies that are difficult to execute under field conditions in the vineyards to facilities under controlled conditions. This approach enables to simulate in greenhouses future climate conditions and to investigate putative responses of grapevine to climate change. An updated description of how to grow grapevine fruit-bearing cuttings is made, together with modifications to carry out studies of partial rootzone drying, regulated deficit irrigation studies and symbiosis with arbuscular mycorrhizal fungi. We summarize how extensive has been the use of fruit-bearing cuttings in grapevine research over the years, with special emphasis in those experiments that analyze the effects of factors related to climate change, such as elevated CO2, elevated temperature, water availability and UV-B radiation, on grapevine physiology, production and grape quality. A validation of the model is made, comparing results obtained with fruit-bearing cuttings with those obtained from vineyard-grown plants. We discuss some advantages of growing grapevines under elevated CO2 with an atmosphere depleted in 13C, using this stable isotope (13C) and others (15N, 54Fe or 57Fe, etc.) as tracers for C, N and other nutrient metabolism studies.This work was supported by the European Project INNOVINE Call FP7-KBBE-2011-6, Proposal No. 311775, Spanish Ministry of Economy and Innovation (BFU2011-26989, AGL2011-30386-C02-02 and AGL2014-56075-C2-1-R), and Aragón Government (A03 Research Group).Peer reviewe
A step towards new irrigation scheduling strategies using plant-based measurements and mathematical modelling
Because of the increasing worldwide shortage of freshwater and costs of irrigation, a new plant-based irrigation scheduling method is proposed. In this method, two real-time plant-based measurements (sap flow and stem diameter variations) are used in combination with a mathematical water flow and storage model in order to predict the stem water potential. The amount of required irrigation water is derived from a time integration of the sap flow profile, while the timing of the irrigation is controlled based on a reference value for the predicted stem water potential. This reference value is derived from the relationship between midday values of maximum photosynthesis rates and stem water potential. Since modelling is an important part of the proposed methodology, a thorough mathematical analysis (identifiability analysis) of the model was performed. This analysis showed that an initial (offline) model calibration was needed based on measurements of sap flow, stem diameter variation and stem water potential. Regarding irrigation scheduling, however, only sap flow and stem diameter variation measurements are needed for online simulation and daily model calibration. Model calibration is performed using a moving window of 4 days of past data of stem diameter variations. The research tool STACI (Software Tool for Automatic Control of Irrigation) was used to optimally combine the continuous measurements, the mathematical modelling and the real-time irrigation scheduling. The new methodology was successfully tested in a pilot-scale setup with young potted apple trees (Malus domestica Borkh) and its performance was critically evaluated
