934,509 research outputs found
Microvariation in Catalan and Occitan complementizers : the so-called expletive se*
The present paper offers further independent evidence for the functional projection INT(errogative) in the left periphery of the sentence (Rizzi 2001) that is needed for an adequate analysis of interrogative clauses in Catalan and Occitan Pyrenees dialects. Since they show a particle se preceding a wh phrase as an instance of the so called “doubly filled complementizer”, according to the central hypothesis of this paper, the INT head is required in order to properly accommodate this element
Metrics of Balance Control for Use in Screening Tests of Vestibular Function
Decrements in balance control have been documented in astronauts after space flight. Reliable measures of balance control are needed for use in postflight field tests at remote landing sites. Diffusion analysis (DA) is a statistical mechanical tool that shows the average difference of the dependent variable on varying time scales. These techniques have been shown to measure differences in open-loop and closed-loop postural control in astronauts and elderly subjects. The goal of this study was to investigate the reliability of these measures of balance control. Eleven subjects were tested using the Clinical Test of Sensory Interaction on Balance: the subject stood with feet together and arms crossed on a stable or compliant surface, with eyes open or closed and with or without head movements in the pitch or yaw plane. Subjects were instrumented with inertial motion sensors attached to their trunk segment. The DA curves for linear acceleration measures were characterized by linear fits measuring open- (Ds) and closed-loop (Dl) control, and their intersection point (X-int, Y-int). Ds and Y-int showed significant differences between the test conditions. Additionally, Ds was correlated with the root mean square (RMS) of the signal, indicating that RMS was dominated by open-loop events (< 0.5 seconds). The Y-int was found to be correlated with the average linear velocity of trunk movements. Thus DA measures could be applied to derive reliable metrics of balance stability during field tests
The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes
We examine the efficiency of gravitational bremsstrahlung production in the
process of head-on collision of two boosted Schwarzschild black holes. We
constructed initial data for the characteristic initial value problem in
Robinson-Trautman spacetimes, that represent two instantaneously stationary
Schwarzschild black holes in motion towards each other with the same velocity.
The Robinson-Trautman equation was integrated for these initial data using a
numerical code based on the Galerkin method. The final resulting configuration
is a boosted black hole with Bondi mass greater than the sum of the individual
mass of each initial black hole. Two relevant aspects of the process are
presented. The first relates the efficiency of the energy extraction
by gravitational wave emission to the mass of the final black hole. This
relation is fitted by a distribution function of non-extensive thermostatistics
with entropic parameter ; the result extends and validates
analysis based on the linearized theory of gravitational wave emission. The
second is a typical bremsstrahlung angular pattern in the early period of
emission at the wave zone, a consequence of the deceleration of the black holes
as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008
A Scalable, Portable, and Memory-Efficient Lock-Free FIFO Queue
We present a new lock-free multiple-producer and multiple-consumer (MPMC) FIFO queue design which is scalable and, unlike existing high-performant queues, very memory efficient. Moreover, the design is ABA safe and does not require any external memory allocators or safe memory reclamation techniques, typically needed by other scalable designs. In fact, this queue itself can be leveraged for object allocation and reclamation, as in data pools. We use FAA (fetch-and-add), a specialized and more scalable than CAS (compare-and-set) instruction, on the most contended hot spots of the algorithm. However, unlike prior attempts with FAA, our queue is both lock-free and linearizable.
We propose a general approach, SCQ, for bounded queues. This approach can easily be extended to support unbounded FIFO queues which can store an arbitrary number of elements. SCQ is portable across virtually all existing architectures and flexible enough for a wide variety of uses. We measure the performance of our algorithm on the x86-64 and PowerPC architectures. Our evaluation validates that our queue has exceptional memory efficiency compared to other algorithms and its performance is often comparable to, or exceeding that of state-of-the-art scalable algorithms
The Difficulties of Learning Logic Programs with Cut
As real logic programmers normally use cut (!), an effective learning
procedure for logic programs should be able to deal with it. Because the cut
predicate has only a procedural meaning, clauses containing cut cannot be
learned using an extensional evaluation method, as is done in most learning
systems. On the other hand, searching a space of possible programs (instead of
a space of independent clauses) is unfeasible. An alternative solution is to
generate first a candidate base program which covers the positive examples, and
then make it consistent by inserting cut where appropriate. The problem of
learning programs with cut has not been investigated before and this seems to
be a natural and reasonable approach. We generalize this scheme and investigate
the difficulties that arise. Some of the major shortcomings are actually
caused, in general, by the need for intensional evaluation. As a conclusion,
the analysis of this paper suggests, on precise and technical grounds, that
learning cut is difficult, and current induction techniques should probably be
restricted to purely declarative logic languages.Comment: See http://www.jair.org/ for any accompanying file
Understanding brønsted-acid catalyzed monomolecular reactions of Alkanes in Zeolite Pores by combining insights from experiment and theory
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at BrOnsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k(app)), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+) and the intrinsic rate coefficient of the reaction (k(int)) at reaction temperatures, since k(app) is proportional to the product of Kads-H+ and k(int). We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C-3-C-6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k(app) and its components, Kads-H+ and k(int)
- …
