144 research outputs found

    Potential Association of DCBLD2 Polymorphisms with Fall Rates of FEV1 by Aspirin Provocation in Korean Asthmatics

    Get PDF
    Aspirin exacerbated respiratory disease (AERD) is a clinical syndrome characterized by chronic rhinosinusitis with nasal polyposis and aspirin hypersensitivity. The aspirin-induced bronchospasm is mediated by mast cell and eosinophilic inflammation. Recently, it has been reported that the expression of discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is up-regulated in lung cancers and is regulated by transcription factor AP-2 alpha (TFAP2A), a component of activator protein-2 (AP-2) that is known to regulate IL-8 production in human lung fibroblasts and epithelial cells. To investigate the associations between AERD and DCBLD2 polymorphisms, 12 common variants were genotyped in 163 AERD subjects and 429 aspirin tolerant asthma (ATA) controls. Among these variants, seven SNPs (rs1371687, rs7615856, rs828621, rs828618, rs828616, rs1062196, and rs8833) and one haplotype (DCBLD2-ht1) show associations with susceptibility to AERD. In further analysis, this study reveals significant associations between the SNPs or haplotypes and the percentage of forced expiratory volume in one second (FEV1) decline following aspirin challenge using multiple linear regression analysis. Furthermore, a non-synonymous SNP rs16840208 (Asp723Asn) shows a strong association with FEV1 decline in AERD patients. Although further studies for the non-synonymous Asp723Asn variation are needed, our findings suggest that DCBLD2 could be related to FEV1-related phenotypes in asthmatics

    A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion

    Get PDF
    Spin thermoelectrics, an emerging thermoelectric technology, offers energy harvesting from waste heat with potential advantages of scalability and energy conversion efficiency, thanks to orthogonal paths for heat and charge flow. However, magnetic insulators previously used for spin thermoelectrics pose challenges for scale-up due to high temperature processing and difficulty in large-area deposition. Here, we introduce a molecule-based magnetic film for spin thermoelectric applications because it entails versatile synthetic routes in addition to weak spin-lattice interaction and low thermal conductivity. Thin films of Cr-II[Cr-III(CN)(6)], Prussian blue analogue, electrochemically deposited on Cr electrodes at room temperature show effective spin thermoelectricity. Moreover, the ferromagnetic resonance studies exhibit an extremely low Gilbert damping constant -(2.4 +/- 0.67) x10(-4), indicating low loss of heat-generated magnons. The demonstrated STE applications of a new class of magnet will pave the way for versatile recycling of ubiquitous waste heat

    Gate-dependent spin Hall induced nonlocal resistance and the symmetry of spin-orbit scattering in Au-clustered graphene

    Get PDF
    Engineering the electron dispersion of graphene to be spin-dependent is crucial for the realization of spin-based logic devices. Enhancing spin-orbit coupling in graphene can induce spin Hall effect, which can be adapted to generate or detect a spin current without a ferromagnet. Recently, both chemically and physically decorated graphenes have shown to exhibit large nonlocal resistance via the spin Hall and its inverse effects. However, these nonlocal transport results have raised critical debates due to the absence of field dependent Hanle curve in subsequent studies. Here, we introduce Au clusters on graphene to enhance spin-orbit coupling and employ a nonlocal geometry to study the spin Hall induced nonlocal resistance. Our results show that the nonlocal resistance highly depends on the applied gate voltage due to various current channels. However, the spin Hall induced nonlocal resistance becomes dominant at a particular carrier concentration, which is further confirmed through Hanle curves. The obtained spin Hall angle is as high as similar to 0.09 at 2 K. Temperature dependence of spin relaxation time is governed by the symmetry of spin-orbit coupling, which also depends on the gate voltage: asymmetric near the charge neutral point and symmetric at high carrier concentration. These results inspire an effective method for generating spin currents in graphene and provide important insights for the spin Hall effect as well as the symmetry of spin scattering in physically decorated graphene

    Additive Effect of Diesel Exhaust Particulates and Ozone on Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma

    Get PDF
    Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (Penh) was measured. Levels of IL-4 and IFN-Îł were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher Penh than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-Îł were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-Îł suggesting that DEP amplify Th2 immune response

    Positive Association between Aspirin-Intolerant Asthma and Genetic Polymorphisms of FSIP1: a Case-Case Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aspirin-intolerant asthma (AIA), which is caused by non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, causes lung inflammation and reversal bronchi reduction, leading to difficulty in breathing. Aspirin is known to affect various parts inside human body, ranging from lung to spermatogenesis. <it>FSIP1</it>, also known as <it>HDS10</it>, is a recently discovered gene that encodes fibrous sheath interacting protein 1, and is regulated by amyloid beta precursor protein (APP). Recently, it has been reported that a peptide derived from APP is cleaved by α disintegrin and metalloproteinase 33 (<it>ADAM33</it>), which is an asthma susceptibility gene. It has also been known that the <it>FSIP1 </it>gene is expressed in airway epithelium.</p> <p>Objectives</p> <p>Aim of this study is to find out whether <it>FSIP1 </it>polymorphisms affect the onset of AIA in Korean population, since it is known that AIA is genetically affected by various genes.</p> <p>Methods</p> <p>We conducted association study between 66 single nucleotide polymorphisms (SNPs) of the <it>FSIP1 </it>gene and AIA in total of 592 Korean subjects including 163 AIA and 429 aspirin-tolerant asthma (ATA) patients. Associations between polymorphisms of <it>FSIP1 </it>and AIA were analyzed with sex, smoking status, atopy, and body mass index (BMI) as covariates.</p> <p>Results</p> <p>Initially, 18 SNPs and 4 haplotypes showed associations with AIA. However, after correcting the data for multiple testing, only one SNP showed an association with AIA (corrected <it>P</it>-value = 0.03, OR = 1.63, 95% CI = 1.23-2.16), showing increased susceptibility to AIA compared with that of ATA cases. Our findings suggest that <it>FSIP1 </it>gene might be a susceptibility gene for aspirin intolerance in asthmatics.</p> <p>Conclusion</p> <p>Although our findings did not suggest that SNPs of <it>FSIP1 </it>had an effect on the reversibility of lung function abnormalities in AIA patients, they did show significant evidence of association between the variants in <it>FSIP1 </it>and AIA occurrence among asthmatics in a Korean population.</p
    • 

    corecore