1,602 research outputs found

    CSF protein biomarkers predicting longitudinal reduction of CSF ÎČ-amyloid42 in cognitively healthy elders.

    Get PDF
    ÎČ-amyloid (AÎČ) plaque accumulation is a hallmark of Alzheimer's disease (AD). It is believed to start many years prior to symptoms and is reflected by reduced cerebrospinal fluid (CSF) levels of the peptide AÎČ1-42 (AÎČ42). Here we tested the hypothesis that baseline levels of CSF proteins involved in microglia activity, synaptic function and AÎČ metabolism predict the development of AÎČ plaques, assessed by longitudinal CSF AÎČ42 decrease in cognitively healthy people. Forty-six healthy people with three to four serial CSF samples were included (mean follow-up 3 years, range 2-4 years). There was an overall reduction in AÎČ42 from a mean concentration of 211-195 pg ml(-1) after 4 years. Linear mixed-effects models using longitudinal AÎČ42 as the response variable, and baseline proteins as explanatory variables (n=69 proteins potentially relevant for AÎČ metabolism, microglia or synaptic/neuronal function), identified 10 proteins with significant effects on longitudinal AÎČ42. The most significant proteins were angiotensin-converting enzyme (ACE, P=0.009), Chromogranin A (CgA, P=0.009) and Axl receptor tyrosine kinase (AXL, P=0.009). Receiver-operating characteristic analysis identified 11 proteins with significant effects on longitudinal AÎČ42 (largely overlapping with the proteins identified by linear mixed-effects models). Several proteins (including ACE, CgA and AXL) were associated with AÎČ42 reduction only in subjects with normal baseline AÎČ42, and not in subjects with reduced baseline AÎČ42. We conclude that baseline CSF proteins related to AÎČ metabolism, microglia activity or synapses predict longitudinal AÎČ42 reduction in cognitively healthy elders. The finding that some proteins only predict AÎČ42 reduction in subjects with normal baseline AÎČ42 suggest that they predict future development of the brain AÎČ pathology at the earliest stages of AD, prior to widespread development of AÎČ plaques

    Do agonists promote rapid internalization of beta-adrenergic receptors?

    Full text link

    Cognitive Reserve Associated with FDG-PET in Preclinical Alzheimer Disease

    Get PDF
    OBJECTIVE: To examine the effect of education (a surrogate measure of cognitive reserve) on FDG-PET brain metabolism in elderly cognitively healthy (HC) subjects with preclinical Alzheimer disease (AD). METHODS: Fifty-two HC subjects (mean age 75 years) with FDG-PET and CSF measurement of Abeta1-42 were included from the prospective Alzheimer's Disease Neuroimaging Initiative biomarker study. HC subjects received a research classification of preclinical AD if CSF Abeta1-42 was <192 pg/mL (Abeta1-42 [+]) vs HC with normal Abeta (Abeta1-42 [-]). In regression analyses, we tested the interaction effect between education and CSF Abeta1-42 status (Abeta1-42 [+] vs Abeta1-42 [-]) on FDG-PET metabolism in regions of interest (ROIs) (posterior cingulate, angular gyrus, inferior/middle temporal gyrus) and the whole brain (voxel-based). RESULTS: An interaction between education and CSF Abeta1-42 status was observed for FDG-PET in the posterior cingulate (p < 0.001) and angular gyrus ROIs (p = 0.03), but was not significant for the inferior/middle temporal gyrus ROI (p = 0.06), controlled for age, sex, and global cognitive ability (Alzheimer's Disease Assessment Scale-cognitive subscale). The interaction effect was such that higher education was associated with lower FDG-PET in the Abeta1-42 (+) group, but with higher FDG-PET in the Abeta1-42 (-) group. Voxel-based analysis showed that this interaction effect was primarily restricted to temporo-parietal and ventral prefrontal brain areas. CONCLUSIONS: Higher education was associated with lower FDG-PET in preclinical AD (Abeta1-42 [+]), suggesting that cognitive reserve had a compensatory function to sustain cognitive ability in presence of early AD pathology that alters FDG-PET metabolism

    Stochastic signatures of involuntary head micro-movements can be used to classify females of ABIDE into different subtypes of neurodevelopmental disorders.

    Get PDF
    © 2017 Torres, Mistry, Caballero and Whyatt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Background: The approximate 5:1 male to female ratio in clinical detection of Autism Spectrum Disorder (ASD) prevents research from characterizing the female phenotype. Current open access repositories [such as those in the Autism Brain Imaging Data Exchange (ABIDE I-II)] contain large numbers of females to help begin providing a new characterization of females on the autistic spectrum. Here we introduce new methods to integrate data in a scale-free manner from continuous biophysical rhythms of the nervous systems and discrete (ordinal) observational scores. Methods: New data-types derived from image-based involuntary head motions and personalized statistical platform were combined with a data-driven approach to unveil sub-groups within the female cohort. Further, to help refine the clinical DSM-based ASD vs. Asperger's Syndrome (AS) criteria, distributional analyses of ordinal score data from Autism Diagnostic Observation Schedule (ADOS)-based criteria were used on both the female and male phenotypes. Results: Separate clusters were automatically uncovered in the female cohort corresponding to differential levels of severity. Specifically, the AS-subgroup emerged as the most severely affected with an excess level of noise and randomness in the involuntary head micro-movements. Extending the methods to characterize males of ABIDE revealed ASD-males to be more affected than AS-males. A thorough study of ADOS-2 and ADOS-G scores provided confounding results regarding the ASD vs. AS male comparison, whereby the ADOS-2 rendered the AS-phenotype worse off than the ASD-phenotype, while ADOS-G flipped the results. Females with AS scored higher on severity than ASD-females in all ADOS test versions and their scores provided evidence for significantly higher severity than males. However, the statistical landscapes underlying female and male scores appeared disparate. As such, further interpretation of the ADOS data seems problematic, rather suggesting the critical need to develop an entirely new metric to measure social behavior in females. Conclusions: According to the outcome of objective, data-driven analyses and subjective clinical observation, these results support the proposition that the female phenotype is different. Consequently the “social behavioral male ruler” will continue to mask the female autistic phenotype. It is our proposition that new observational behavioral tests ought to contain normative scales, be statistically sound and combined with objective data-driven approaches to better characterize the females across the human lifespan.Peer reviewe

    Human platelets are defective in processing of cholera toxin

    Full text link

    Persistent Associations between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years

    Get PDF
    Background Prior research reports inverse associations between maternal prenatal urinary phthalate metabolite concentrations and mental and motor development in preschoolers. No study evaluated whether these associations persist into school age. Methods In a follow up of 328 inner-city mothers and their children, we measured prenatal urinary metabolites of di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBzP), di-isobutyl phthalate (DiBP), di-2-ethylhexyl phthalate and diethyl phthalate in late pregnancy. The Wechsler Intelligence Scale for Children, 4th edition was administered at child age 7 years and evaluates four areas of cognitive function associated with overall intelligence quotient (IQ). Results Child full-scale IQ was inversely associated with prenatal urinary metabolite concentrations of DnBP and DiBP: b = −2.69 (95% confidence interval [CI] = −4.33, −1.05) and b = −2.69 (95% CI = −4.22, −1.16) per log unit increase. Among children of mothers with the highest versus lowest quartile DnBP and DiBP metabolite concentrations, IQ was 6.7 (95% CI = 1.9, 11.4) and 7.6 (95% CI = 3.2, 12.1) points lower, respectively. Associations were unchanged after control for cognition at age 3 years. Significant inverse associations were also seen between maternal prenatal metabolite concentrations of DnBP and DiBP and child processing speed, perceptual reasoning and working memory; DiBP and child verbal comprehension; and BBzP and child perceptual reasoning. Conclusion Maternal prenatal urinary metabolite concentrations measured in late pregnancy of DnBP and DiBP are associated with deficits in children’s intellectual development at age 7 years. Because phthalate exposures are ubiquitous and concentrations seen here within the range previously observed among general populations, results are of public health significance

    The alimentary impact of the hemp seed

    Get PDF
    Hemp seed and hemp seed oil can supply us with many important substances. Their essential fatty acid compositions are favourable, but they may contain non-psychotropic cannabinoids. Emerging data show that these components can influence the health status of the population beneficially. Some data also showed trace amounts of tetrahydrocannabinol in seed oils, the main psychotropic cannabinoid that is contraindicated.Our aim was to examine cannabinoids and fatty acid composition as well as metal and non-metal element compositions in products, like hemp seed oil and chopped hemp seed capsule.The cannabinoids were separated by thin layer chromatography. Fatty acid composition was determined with gas chromatography, and elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sn, Sr, V, and Zn) were measured by inductively coupled plasma optical emission spectrometric method. Selenium was determined with polarographic analyser.Cannabinoids were not detectable by thin layer chromatography, so hemp seed oil, as well as the capsule, have no psychotropic adverse effect. Our data showed that hemp seed contains essential fatty acids close to the recommended ratio. The B and Se concentrations of the oils and the P concentration of the capsule are also relevant

    Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging

    Get PDF
    BACKGROUND: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer's disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. METHODS: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database ( www.oasis-brains.org ). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-Δ4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≀ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≀ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-Δ4 carriers only. RESULTS: Although highly correlated to DVR (ρ = .96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-Δ4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). CONCLUSION: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-Δ4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development
    • 

    corecore