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Abstract

Background: Prior research reports inverse associations between maternal

prenatal urinary phthalate metabolite concentrations and mental and motor

development in preschoolers. No study evaluated whether these associations

persist into school age.

Methods: In a follow up of 328 inner-city mothers and their children, we measured

prenatal urinary metabolites of di-n-butyl phthalate (DnBP), butylbenzyl phthalate

(BBzP), di-isobutyl phthalate (DiBP), di-2-ethylhexyl phthalate and diethyl phthalate

in late pregnancy. The Wechsler Intelligence Scale for Children, 4th edition was

administered at child age 7 years and evaluates four areas of cognitive function

associated with overall intelligence quotient (IQ).

Results: Child full-scale IQ was inversely associated with prenatal urinary

metabolite concentrations of DnBP and DiBP: b522.69 (95% confidence interval

[CI]524.33, 21.05) and b522.69 (95% CI524.22, 21.16) per log unit increase.

Among children of mothers with the highest versus lowest quartile DnBP and DiBP

metabolite concentrations, IQ was 6.7 (95% CI51.9, 11.4) and 7.6 (95% CI53.2,

12.1) points lower, respectively. Associations were unchanged after control for

cognition at age 3 years. Significant inverse associations were also seen between

maternal prenatal metabolite concentrations of DnBP and DiBP and child

processing speed, perceptual reasoning and working memory; DiBP and child

verbal comprehension; and BBzP and child perceptual reasoning.
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Conclusion: Maternal prenatal urinary metabolite concentrations measured in late

pregnancy of DnBP and DiBP are associated with deficits in children’s intellectual

development at age 7 years. Because phthalate exposures are ubiquitous and

concentrations seen here within the range previously observed among general

populations, results are of public health significance.

Introduction

Phthalates are a class of high production chemicals widely used as plasticizers and

additives in consumer and personal care products [1]. Many phthalates are

endocrine disruptors which may operate through multiple mechanisms including

perturbations in thyroid hormone and testosterone levels [2, 3]. Exposures to

phthalates are ubiquitous [4, 5]. Urinary concentrations of phthalate metabolites

are used as internal dosimeters because urinary enzymatic activity is negligible [6];

thus metabolite concentrations in urine reflect an individual’s internal exposure to

phthalates, rather than phthalate contaminants introduced during sample

collection and processing. Prior studies have shown moderate reproducibility (i.e.

intraclass correlation coefficients ranging from approximately 0.20 to 0.77) for

measurements of several phthalate metabolite concentrations in repeat spot urine

samples [5, 7–9].

Limited epidemiologic studies have reported inverse associations between

phthalate metabolites in maternal prenatal urine and child mental, motor and

behavioral development [5, 10]. Previously, we reported that maternal prenatal

urinary concentrations of mono-n-butyl phthalate (MnBP) and monoisobutyl

phthalate (MiBP), the main metabolites of di-n-butyl phthalate (DnBP) and di-

isobutyl phthalate (DiBP), respectively, were inversely associated with child age 3

year motor development and increased the risk of motor delay [5]. Among girls,

MiBP was also inversely associated with mental development [5]. Experimental

animal studies find inverse associations between prenatal exposure to di-2-

ethylhexyl phthalate (DEHP) and DnBP and learning and memory in the

offspring [11, 12]. No prior studies have evaluated associations between prenatal

phthalate exposures on child intelligence quotient (IQ) in school-age children.

However, a cross-sectional study of Korean 3rd and 4th grade children found

inverse associations between DEHP metabolites in child urine and IQ [13]. Based

on these findings, we hypothesized that prenatal phthalates exposures would be

inversely associated with child IQ at age 7 years.

Methods

We studied 328 inner-city women and their 7-year old children from the

Columbia Center for Children’s Environmental Health (CCCEH) longitudinal

birth cohort of 727 pregnant women who delivered between 1998 and 2006. The
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original aim of the cohort was to examine the associations between exposure to air

pollutants and pregnancy outcomes and child development. Enrollment,

exclusion criteria, and a description of the cohort have been described previously

[14]. Women 18–35 years old who self-identified as either African American or

Dominican were enrolled through prenatal clinics associated with Harlem and

New York Presbyterian Hospitals. Women were excluded if they reported active

smoking, use of other tobacco products or illicit drugs, had diabetes, hypertension

or known HIV, had their first prenatal visit after the 20th week of gestation or had

resided in the study area for less than one year prior to pregnancy. Mother-child

pairs were selected for participation in the current study if phthalate metabolite

concentrations had been measured in spot urine samples collected during

pregnancy and if the child had completed the Wechsler Intelligence Scale for

Children, 4th edition (WISC-IV) at age 7 years. We excluded women with active

smoking during pregnancy verified by maternal and/or umbilical cord plasma

cotinine .15 ng/ml at delivery (n530), no or insufficient urine for measurement

of phthalate metabolites (n5286), and those lost to follow-up prior to child age 7

years (n583). Among women who had prenatal phthalate measurements, the

retention rate was 80% at the 7-year follow-up. The 328 study subjects did not

differ significantly from the remaining subjects in the CCCEH cohort in terms of

demographics (race/ethnicity, maternal marital status, education level, household

income, proportion receiving Medicaid), prenatal alcohol consumption, child sex,

gestational age, and birth weight (all p-values.0.05). Moreover, study children

did not differ from the remaining children with respect to mental and motor

development scores at age 3 years.

Ethics Statement

Institutional review boards at the Columbia University Medical Center and the

Centers for Disease Control and Prevention (CDC) approved the study and all

consent procedures for the study. Written informed consent was obtained from all

participating mothers, who also provided written informed consent on behalf of

their children, and written informed assent was obtained from all children starting

at age 7 years.

Urine sample collection and phthalate measurements

Spot urine samples were collected during the 3rd trimester of pregnancy (average

34.0¡3.0 weeks, median 33.9) and from the children at ages 3 (n5241) and 5

(n5277) years. Samples were analyzed for metabolites of 5 phthalates (DnBP,

BBzP, DiBP, DEHP and diethylphthalate) at the CDC as described [15]. Specific

gravity was measured in the urine samples using a handheld refractometer and

used to control for urinary dilution (Atago PAL 10-S, Bellevue, WA) [7].

As a measure of reliability, we calculated intraclass correlation coefficients

(ICCs) for the phthalate metabolites in serial spot urine samples collected

biweekly from 48 women in the CCCEH cohort over 6–8 weeks late in pregnancy
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(n5135 samples, 2–4 repeats per woman). Adjusting for specific gravity, ICCs

were 0.77 for MBzP, 0.65 for mono-n-butyl phthalate (MnBP), and 0.60 for

monoisobutyl phthalate (MiBP) and ranged from 0.27 to 0.42 for the DEHP

metabolites [5].

Measures of child mental development

The Wechsler Intelligence Scale for Children, 4th edition (WISC-IV) [16] was

administered to children at age 7 years. The instrument measures four areas of

mental functioning that are associated with, but distinct from, overall IQ. The

Verbal Comprehension Index is a measure of verbal concept formation; the

Perceptual Reasoning Index measures nonverbal and fluid reasoning; the Working

Memory Index assesses children’s ability to memorize new information, hold it in

short-term memory, concentrate, and manipulate information; and the

Processing Speed Index assesses ability to focus attention and quickly scan,

discriminate, and sequentially order visual information. Full-Scale IQ score

combines the four composite indices. All WISC-IV scales are standardized to a

mean of 100 and standard deviation (SD) of 15. The WISC-IV has been shown in

prior research to be sensitive to effects of low-dose neurotoxicant exposures on

cognition [17–19].

Model covariates

Information on potential confounders was gathered by questionnaires adminis-

tered to the mother during pregnancy and at various postnatal intervals by trained

bi-lingual interviewers and by review of maternal and infant medical records.

Variables of interest included race/ethnicity, maternal education and marital

status, household income, parity, gestational age, birth weight, child sex,

breastfeeding history, exposure to tobacco smoke in the home, prenatal alcohol

consumption, and prenatal psychosocial factors including maternal self-report of

hardship during pregnancy (i.e., lack of food, clothing, housing, gas or electricity,

or medicines) and satisfaction with overall living conditions. Maternal

demoralization was measured by the 27-item Psychiatric Epidemiology Research

Instrument-Demoralization Scale [20]. Maternal intelligence was assessed by the

Test of Non-Verbal Intelligence, third edition [21], a language-free measure of

general intelligence, which is relatively stable and free of cultural bias. The quality

of the care-taking environment was measured by the Home Observation for

Measurement of the Environment (HOME) scale [22] at child age 38.4¡6.2

months.

Statistical analysis

Linear regression models were used to examine relationships between prenatal

exposures to the five phthalates (assessed from the urinary metabolite

concentrations) and WISC-IV outcomes. Phthalate metabolite concentrations

below the limit of detection (LOD) (one for monobenzyl phthalate (MBzP), one
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for mono-isobutyl phthalate (MiBP) and 53 for mono-2-ethylhexyl phthalate

(MEHP)) were assigned a value of LOD/!2 [23]. The distributions of the

phthalate metabolite concentrations were right skewed and transformed using the

natural logarithm to improve model fitting and reduce the influence of extreme

values. In our analyses, each metabolite was considered as a continuous variable

and was categorized into quartiles to explore the shape of the dose response

relationship. The final regression models included covariates that were a priori

potential confounders based on previous literature and a directed acyclic graph,

and that were associated with at least one WISC-IV subscale or the total WISC-IV

score [5, 17, 18]. Missing values for covariates were imputed as follows: a) twelve

missing values for maternal IQ were imputed by a linear regression model with

race/ethnicity, maternal education and age as predictors (model R250.13); b)

twenty missing observations for the HOME scale were imputed by linear

regression model with race/ethnicity, maternal education and IQ, and household

income as predictors (model R250.18); c) ten missing observations for prenatal

maternal alcohol consumption were given a category of missing. Sensitivity

analyses were conducted for observations with no missing data (reducing the

sample size to 290); results were essentially unchanged from those reported here.

We used maternal urinary concentrations of mono-2-ethyl-5-hydroxyhexyl

phthalate (MEHHP) as the proxy for exposure to DEHP. All DEHP metabolites

were highly correlated with each other (Spearman correlation coefficient r$0.8)

[25]. In a sensitivity analysis results using MEHP as the DEHP exposure proxy

were essentially the same. Analyses were repeated using the molar sum of all four

DEHP metabolites, also with essentially the same results. Urinary specific gravity

was included in all models to control for dilution 7. We evaluated confounding in

two ways. First, we constructed a directed acyclic graph to determine potential

confounders. Second, for each potential confounder, we assessed the change in the

estimated regression coefficient between the exposure of interest (i.e. specific

phthalate metabolite) and outcome (i.e. either the WISC IQ measure or the WISC

subscale measure) with and without the potential confounder. We included

variables in the model if their inclusion changed the estimated regression

coefficient between exposure and outcome by more than.5 standard deviation

units. To evaluate whether sex of the child was an effect modifier, we conducted

analyses separately by sex, and assessed whether the estimated coefficients differed

using the Wald test. In secondary analyses, we included a measure of cognitive

performance at age 3 years (the Mental Development Index (MDI) from the

Bayley Scales of Infant Development-second edition (1993). Additionally, we

evaluated whether child age 3 and 5 years urinary phthalate metabolite

concentrations were associated with WISC-IV outcomes at age 7 years. We also

evaluated whether other contaminants, namely lead, chlorpyrifos, and polycyclic

aromatic hydrocarbons (PAHs), were potential confounders. With the exception

of a negative correlation between PAHs and one phthalate metabolite (MiBP)

(r520.13, p5.02), no correlations were found between any other contaminant

and phthalate metabolite. In a sensitivity analysis, we included PAHs in the

regression model relating MiBP to the cognitive outcomes; the magnitudes of the
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regression coefficients became stronger and more statistically significant. Analyses

were conducted using SAS (version 9.3 SAS Institute Inc., Cary, NC).

Results

Maternal sociodemographic characteristics, infant birth and child characteristics

and distributions of model covariates and outcome variables are presented in

Table 1. Eighteen children (5.5%) were administered the test in Spanish. Table 2

shows the distribution of the urinary phthalate metabolite concentrations in

maternal prenatal spot samples. Metabolites were detected in 99.7–100% of the

samples, except for MEHP in which 16% of the measures were below the LOD.

Nevertheless, for the 53 measures that were below the LOD, using the actual

concentrations or the assignment of a value (1/!2)6LOD produced essentially the

same results. Spearman correlation coefficients between the specific gravity

adjusted maternal prenatal metabolite concentrations ranged from 0.15 (for

monoethyl phthalate (MEP) and both MBzP and MEHHP) to 0.63 (for MiBP and

MnBP). Correlations for the urinary phthalate metabolite concentrations in child

age 3 and 5 year samples were similar (data not shown). However, correlations

between each phthalate metabolite across ages (prenatal, age 3 and 5 years) were

not statistically significant. The correlation between Bayley MDI score and full

scale IQ at age 7 was 0.43 (p,.0001) and between maternal IQ and full scale IQ at

age 7 was 0.26 (p,.0001).

In the total cohort (table 3), full scale IQ was inversely associated with

logeMnBP (b5–2.69 [95% CI5–4.33, –1.05]) and logeMiBP (b5–2.69 [95%

CI5–4.22, –1.16]) but not with the other phthalate metabolites. Additonally,

logeMnBP, logeMiBP and logeMBzP were significantly inversely associated with

perceptual reasoning, logeMnBP and logeMiBP with processing speed, logeMiBP

with verbal comprehension, and logeMnBP and logeMiBP with working memory.

There were no significant associations between maternal MEHP, MEHHP or MEP

concentrations and any of the WISC-IV scales. There were some differences in the

estimated regression coefficients relating the exposures to outcomes between boys

and girls, although with one exception none reached statistical significance.

Specifically, associations between MnBP and full scale IQ and perceptual

reasoning appeared stronger among girls than boys, and associations between

MnBP and processing speed appeared stronger among boys. Additionally,

associations between MBzP and perceptual reasoning and between MiBP and

verbal comprehension appeared stronger among boys. MnBP was associated with

working memory and the size of the associations was significantly larger among

girls than boys (p50.02 Wald test). Controlling for postnatal year three and year

five phthalate metabolites concentrations did not alter the association between

prenatal phthalate exposures and the WISC outcomes at age 7 years.

Full scale IQ scores among children born to mothers with urinary MnBP and

MiBP concentrations in the highest compared to the lowest quartiles were 6.6,

95% CI5(1.89, 11.41) and 7.6, 95% CI5(3.2, 12.1) points lower, respectively

Prenatal Phthalates and Child IQ

PLOS ONE | DOI:10.1371/journal.pone.0114003 December 10, 2014 6 / 15



(Figure 1). Similar differences were found for the perceptual reasoning, processing

speed and working memory scores. Children whose mother had the highest versus

lowest concentration of MBzP and MiBP had significantly lower scores on

Table 1. Subject demographics, distribution of model covariates, and outcome variables (N5328).

Characteristic Value (%)

Maternal age at prenatal interview (yr) 25.3¡4.8

Ethnicity

African American 215 (34.5)

Dominican or other Hispanic 113 (65.5)

Maternal education

,High school degree 119 (36.3)

$High school diploma or general educational development (GED) 209 (63.7)

Marital status

Never married 220 (67.1)

Ever Marrieda 108 (32.9)

Maternal IQ (n5316) 84.6¡13.3

HOME scale (n5308) 39.2¡6.3

Prenatal alcohol consumption (N5318) 82 (25.8)

Child sex

Male 155 (47.3)

Female 173 (52.7)

Child age at WISC-IV (yr) 7.05¡0.20

WISC-IV Outcome variables

Full Scale Composite Score 97.1¡13.1

Perceptual Reasoning Composite Score 99.3¡14.0

Processing Speed Composite Score 98.9¡14.6

Verbal Comprehension Composite Score 94.4¡12.7

Working Memory Composite Score 98.5¡14.9

Values are mean ¡ SD or n (percent). Unless indicated, N5328.
aIncludes living with same partner for .7 years.

doi:10.1371/journal.pone.0114003.t001

Table 2. Distribution of Phthalate metabolites (ng/ml) in maternal spot urine during the third trimester of pregnancy (n5328).

Metabolite Mean 95% CI LOD* %,LOD Range 25% Median 75%

MnBP 37.6 (33.5, 42.3) 0.6 0 1.2–1,110 19.4 38.0 79.8

MBzP 13.4 (11.6, 15.4) 0.22 0.3 ND–550.4 5.8 14.4 30.0

MEHHP 22.3 (19.4, 25.5) 0.7 0 1.1–1750 10.6 21.8 47.2

MEHP 4.95 (4.2, 5.7) 1.2 16.2 ND–613 1.9 4.9 12.4

MEP 160.5 (140.4, 183.4) 0.53 0 7.8–6045.6 69.9 141.5 334.1

MiBP 9.1 (8.1. 10.2) 0.3 0.3 ND–374.4 5.0 9.2 19.0

ND5not detected.

doi:10.1371/journal.pone.0114003.t002
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Table 3. Estimated adjusted regression coefficients relating maternal prenatal urinary phthalate concentrations to the WISC-IV full scale IQ and subscales at
child age 7 years.

B-Coefficient (95% CI) Child sex

Total Girls Boys Difference

Metabolite (log base e) (n5328) (n5173) (n5155) p-value@

Full Scale

MBnP 22.69 (24.33,21.05)** 23.15 (25.44,20.87)** 21.89 (24.34, 0.56) 0.46

MBzP 21.18 (22.40, 0.05) 20.84 (22.52, 0.83) 21.48 (23.35, 0.38) 0.61

MEHHP 0.16 (21.16, 1.48) 0.34 (21.35, 2.03) 0.26 (21.87, 2.40) 0.96

MEHP 20.30 (21.42, 0.82) 20.05 (21.53, 1.42) 0.09 (21.92, 2.11) 0.74

MEP 20.17 (21.46, 1.13) 20.75 (22.53, 1.03) 0.40 (21.53, 2.33) 0.39

MiBP 22.69 (24.22,21.16)** 22.38 (24.50,20.26)* 22.92 (25.17,20.67)* 0.73

Perceptual Reasoning

MnBP 22.58 (24.40,20.76)** 23.55 (25.96,21.14)** 21.50 (24.36, 1.35) 0.28

MBzP 21.65 (23.00,20.30)* 21.13 (22.89, 0.64) 22.45 (24.60,20.31)* 0.35

MEHHP 0.18 (21.28, 1.64) 0.03 (21.76, 1.82) 0.56 (21.92, 3.04) 0.73

MEHP 20.07 (21.30, 1.17) 20.09 (21.65, 1.48) 0.01 (22.00, 2.03) 0.94

MEP 20.62 (22.05, 0.81) 20.67 (22.56, 1.22) 20.57 (22.81, 1.67) 0.95

MiBP 22.41 (24.11,20.71)* 22.39 (24.64,20.14)* 22.41 (25.05, 0.23) 0.99

Processing Speed

MnBP 22.01 (23.91,20.11)* 21.29 (24.04, 1.45) 22.85 (25.63,20.08)* 0.43

MBzP 20.47 (21.88, 0.95) 20.74 (22.72, 1.23) 20.02 (22.17, 2.12) 0.63

MEHHP 20.41 (21.91, 1.10) 20.84 (22.83, 1.15) 0.25 (22.19, 2.68) 0.50

MEHP 20.95 (22.23, 0.33) 20.93 (22.67, 0.80) 20.94 (22.92, 1.03) 0.99

MEP 0.54 (20.95, 2.03) 20.26 (22.37, 1.84) 1.21 (20.99, 3.41) 0.34

MiBP 21.94 (23.72,20.17)* 21.94 (24.46, 0.58) 22.10 (24.70, 0.50) 0.93

Verbal Comprehensionn
oCnsion

MnBP 21.52 (23.06, 0.02) 21.06 (23.29, 1.16) 21.64 (23.90, 0.62) 0.72

MBzP 20.78 (21.92, 0.36) 20.46 (22.06, 1.14) 21.07 (22.79, 0.66) 0.61

MEHHP 0.46 (20.76, 1.69) 0.86 (20.75, 2.47) 0.09 (21.88, 2.06) 0.55

MEHP 20.28 (21.32, 0.76) 20.01 (21.42, 1.40) 20.60 (22.20, 1.00) 0.58

MEP 0.10 (21.30, 1.11) 20.71 (22.42, 0.99) 0.52 (21.26, 2.31) 0.32

MiBP 22.08 (23.51,20.65)** 21.05 (23.10, 1.00) 23.04 (25.11,20.98)** 0.18

Working Memory

MnBP 22.57 (24.55,20.59)** 24.73 (27.53,21.93)** 20.07 (22.92, 2.78) 0.02

MBzP 20.68 (22.16, 0.80) 20.59 (22.67, 1.48) 20.50 (22.68, 1.67) 0.95

MEHHP 0.36 (21.23, 1.94) 1.16 (20.92, 3.25) 20.29 (22.76, 2.18) 0.37

MEHP 0.55 (20.79, 1.89) 1.22 (20.60, 3.04) 0.09 (21.92, 2.11) 0.41

MEP 20.39 (21.95, 1.17) 21.06 (23.26, 1.15) 0.28 (21.96, 2.52) 0.40

MiBP 21.98 (23.84,20.12)* 22.53 (25.16, 0.11) 21.27 (23.92, 1.38) 0.51

*p,0.05, **p#0.01. @Wald Test.
Adjusted model for specific gravity, maternal IQ, ethnicity, alcohol use during pregnancy, education, marital status, total home score, and sex of child.

doi:10.1371/journal.pone.0114003.t003
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perceptual reasoning (by 3.9 points) and verbal comprehension (by 4.4 points),

respectively.

Examination of postnatal phthalate exposure controlling for prenatal exposure

suggested specific associations between MBzP measured at age 3 and several of the

outcomes. Specifically, we found inverse associations between, loge MBzP

concentrations measured at age 3 were inversely associated with full-scale IQ

(b5–1.52; 95% CI5(–2.71, –0.32)), perceptual reasoning (b5–1.68; 95% CI5(–

3.01, –0.36)), and working memory (b5–2.2.47; 95% CI5(–3.92, –1.01)) at age 7

years (see Table S1). We observed no associations between concentrations of

phthalate metabolites measured at age 5 years and IQ measured at age 7 years; nor

did we see any significant associations between the WISC-IV scales and MnBP and

MiBP measured at age 3 years. Finally, there was no change in the associations

between prenatal urinary phthalate metabolites and any of the WISC outcomes

after inclusion of the child age 3 years mental development index (MDI) on the

Figure 1. Adjusted mean WISC-IV total score and subtest scored by lowest to highest quartile of
maternal prenatal phthalate metabolite concentration (where q05lowest quartile, q45highest quartile,
q2 and q3 intermediate quartiles). Means adjusted for urine specific gravity, maternal IQ, ethnicity, alcohol
use during pregnancy, education, marital status, quality of the home environment (HOME score) and sex of
child. *p,0.05, **p#0.01.

doi:10.1371/journal.pone.0114003.g001
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Bayley Scales of Infant Development. Associations also did not change when

language of test administration was controlled.

Discussion

In our follow up study of children prenatally exposed to phthalates, we found

significant associations between exposure to DnBP and DiBP and IQ measured at

age 7 years, after adjusting for potential confounders. Compared to children born

to women in the lowest 25th concentration percentile, children born to women

above the 75th concentration percentile for MnBP and MiBP scored 6.6 and 7.6

points lower on 7 year IQ. Similar associations were found between these

metabolites and perceptual reasoning, working memory and processing speed

subscales of the WISC-IV. Differences in the estimates of association were found

in boys and girls. Associations between maternal prenatal MnBP concentrations

and child age 7 full scale IQ, perceptual reasoning and working memory were

stronger among girls and associations between maternal prenatal MnBP and

MiBP concentrations and processing speed and verbal comprehension, respec-

tively, were stronger among boys. We note however, that with one exception the

interactions between phthalate metabolites and sex did not reach conventional

statistical significance criterions.

These findings extend our earlier observation of associations between prenatal

exposure to phthalates and children’s cognitive function and behavior at age 3

years5. In the earlier analysis, we found inverse associations between urinary

concentrations of MnBP and MiBP and scores on the psychomotor development

index (PDI) of the Bayley Scales of Infant Development (BSID) for both boys and

girls, and an inverse association between MnBP concentrations and the mental

development index (MDI) of the BSID in girls only. Taken together, our findings

suggest adverse associations between prenatal phthalate exposure and cognition

that persist into the early school years, with potentially meaningful implications

for academic performance. We also find associations between MBzP measured at

age 3 and full scale IQ, and the perceptual motor and working memory subscales

at age 7, suggesting a role of postnatal exposure for specific phthalates.

Several studies have reported associations between prenatal phthalate exposure

and neurodevelopment, but the literature is inconsistent regarding the specific

phthalate metabolites examined and the finding of sex-specific associations. Engel,

et al (2009) [24] found associations in girls, but not boys, between metabolites of

high molecular weight phthalates (e.g. DEHP, BBzP) on the Brazelton Neonatal

Behavioral Scale administered within five days of delivery. Yolton, et al (2011)

[25] reported associations between the urinary concentrations of DEHP

metabolites and suboptimal neurological reflexes in boys at 5 weeks of age. Kim, et

al (2011) [10] found associations between urinary concentrations of DEHP

metabolites and delays in both BSID mental and motor development and urinary

concentrations of DnBP metabolite and delays in mental development in 6-month

old Korean boys. These three studies are limited by the measure of
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neurobehavioral assessment, which becomes more reliable as the children age.

Tellez-Rojo et al (2013) [26] evaluated prenatal phthalate exposure and repeated

BSID scores at ages 2, 2.5 and 3 years in 135 children enrolled in the ELEMENT

study in Mexico and found associations with DEHP metabolites in sex-specific

analyses only. A final, albeit cross sectional, study found inverse associations

between metabolites of DEHP and DnBP and vocabulary development at ages 8–

11 years among Korean children [13]. The inconsistent associations regarding the

specific phthalates may be due to the variability in age of assessment (the BSID

become more stable with increasing age at assessment), the WISC testing different

constructs than the BSID, poor adjustment for the correlations between phthalate

metabolites, and differences in the concentrations of phthalates in the specific

populations. Nevertheless, the consistent pattern of associations between MnBP

and MiBP across ages in our cohort lends support to our cognitive findings.

Comparison of the concentrations of phthalate metabolites in our study to

those in the last reported NHANES data [27] find, as expected, slightly higher

concentrations among women in our sample. However, the confidence intervals

in our data and the NHANES data overlap substantially, suggesting that the

concentrations in our study are still relevant.

There are several possible mechanisms underlying these associations. Phthalates

may act as anti-androgens and lead to disruption in the normal sexual

differentiation of the brain [28–30]; they may modulate the activity of aromatase

in the developing brain and thus interfere with estrogen synthesis [31, 32]; they

may interfere with thyroid hormone production [33–36, 29, 37–41]; and they may

disrupt brain dopaminergic activity [42, 43] which is linked to inattention and

hyperactivity [44]. These mechanisms may shed light on why the adverse

associations are sex specific.

Our study has a number of strengths. First it is a prospective evaluation with

assessment of exposure to phthalates not only in the prenatal period, but also at

ages 3 and 5 years. It is noteworthy that our associations were primarily limited to

prenatal concentrations of phthalate metabolites, with some additional associa-

tions seen for age 3 exposures, suggesting that there are critical periods of

exposure related to adverse cognitive outcomes. Second, although our sample size

was likely not sufficient to estimate sex-specific associations, we did observe

several sex specific differences in associations. This is important given that many

of the purported mechanisms for these associations are linked to brain

concentrations of sex hormones. However, there are also some limitations. We are

unable to identify specific times during pregnancy when phthalates could be

related to outcomes as urine was only collected from the pregnant women in the

third trimester. Because phthalates have a half- life of approximately 12 hours,

single, spot urine measures do not reflect long term exposure. We evaluated

reproducibility of these urine measures in a sample of 48 women who had repeat

urine measures during the third trimester; the ICCs were 0.77 for MBzP, 0.65 for

mono-n-butyl phthalate (MnBP), and 0.60 for monoisobutyl phthalate (MiBP)

and ranged from 0.27 to 0.42 for the DEHP metabolites, indicating moderate

reliability over a short time span. Strictly speaking, therefore, our results should be
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specific to phthalate exposure during the third trimester. Restriction of the study

sample to inner-city African American and Hispanics reduces the generalizability

of the results, but likely also minimized residual confounding by socioeconomic

status and race. We note that we also controlled for a variety of factor known to be

associated with child IQ, namely maternal IQ, race/ethnic group, alcohol use

during pregnancy, maternal education, marital status, other contaminants and

HOME score. Birth weight, another predictor of child IQ, did not change the

estimated associations between any phthalate metabolite and IQ. Further work in

other ethnic and socioeconomic populations would be needed to generalize these

results. We also measured a limited number of phthalate metabolites and thus

cannot infer our results to other phthalates. We also could not evaluate the

associations between phthalate exposure and school performance as these data are

not available. Finally, there may be some measurement error in the categorization

of phthalates exposure based on urinary metabolite concentrations because the

correlations between measures of the same metabolite over relatively short

intervals were moderate to low [9].

Given the observational nature of this study, we cannot conclude a causal

relationship between late prenatal exposure to certain phthalates and reductions

in IQ. Nevertheless, we have now observed consistent associations between

exposure and outcomes measured at two time-points, one in the preschool years

and one in the early school years, suggesting the results are not spurious and

appear to be persistent. Indeed, the associations in the early school years are not

diminished after control for MDI measured at age 3 years, suggesting a robust

association. We note that the consistency of the associations over time has

implications for public health and regulatory policy.

In conclusion, our analysis of the associations between prenatal phthalate

exposure and IQ in the early school years showed significant decrements in IQ

associated with two specific phthalates. These findings are important to inform

policy makers of the potentially harmful effects of this class of chemicals.

Supporting Information

Table S1. Estimated coefficients of urinary phthalate concentrations in the

linear model for WISC-IV when the children were 7 years of age. aModels

include those with phthalate metabolite data at age 3. bModels include those with

phthalate metabolite data at age 5. *p,0.05, **p#0.01. The model controlled for

specific gravity (prenatal, age 3, and age 5 as appropriate), maternal IQ, ethnicity,

alcohol use during pregnancy, education, marital status, total home score, and sex

of child.

doi:10.1371/journal.pone.0114003.s001 (DOCX)
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