22 research outputs found

    GIMAP6 is required for T cell maintenance and efficient autophagy in mice

    Get PDF
    The GTPases of the immunity-associated proteins (GIMAP) GTPases are a family of proteins expressed strongly in the adaptive immune system. We have previously reported that in human cells one member of this family, GIMAP6, interacts with the ATG8 family member GABARAPL2, and is recruited to autophagosomes upon starvation, suggesting a role for GIMAP6 in the autophagic process. To study this possibility and the function of GIMAP6 in the immune system, we have established a mouse line in which the Gimap6 gene can be inactivated by Cre-mediated recombination. In mice bred to carry the CD2Cre transgene such that the Gimap6 gene was deleted within the T and B cell lineages there was a 50-70% reduction in peripheral CD4(+) and CD8(+) T cells. Analysis of splenocyte-derived proteins from these mice indicated increased levels of MAP1LC3B, particularly the lipidated LC3-II form, and S405-phosphorylation of SQSTM1. Electron microscopic measurements of Gimap6(-/-) CD4(+) T cells indicated an increased mitochondrial/cytoplasmic volume ratio and increased numbers of autophagosomes. These results are consistent with autophagic disruption in the cells. However, Gimap6(-/-) T cells were largely normal in character, could be effectively activated in vitro and supported T cell-dependent antibody production. Treatment in vitro of CD4(+) splenocytes from GIMAP6(fl/fl) ERT2Cre mice with 4-hydroxytamoxifen resulted in the disappearance of GIMAP6 within five days. In parallel, increased phosphorylation of SQSTM1 and TBK1 was observed. These results indicate a requirement for GIMAP6 in the maintenance of a normal peripheral adaptive immune system and a significant role for the protein in normal autophagic processes. Moreover, as GIMAP6 is expressed in a cell-selective manner, this indicates the potential existence of a cell-restricted mode of autophagic regulation.Peer reviewe

    Targeting TLR4 during vaccination boosts MAdCAM-1+ lymphoid stromal cell activation and promotes the aged germinal center response

    Get PDF
    The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1+ stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1+ stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people

    Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ.

    Get PDF
    Ageing profoundly changes our immune system and is thought to be a driving factor in the morbidity and mortality associated with infectious disease in older people. We have previously shown that the impaired immunity to vaccination that occurs in aged individuals is partly attributed to the effect of age on T follicular helper (Tfh) cell formation. In this study, we examined how age intrinsically affects Tfh cell formation in both mice and humans. We show increased formation of Tfh precursors (pre-Tfh) but no associated increase in germinal centre (GC)-Tfh cells in aged mice, suggesting age-driven promotion of only early Tfh cell differentiation. Mechanistically, we show that ageing alters TCR signalling which drives expression of the Notch-associated transcription factor, RBPJ. Genetic or chemical modulation of RBPJ or Notch rescues this age-associated early Tfh cell differentiation, and increased intrinsic Notch activity recapitulates this phenomenon in younger mice. Our data offer mechanistic insight into the age-induced changes in T-cell activation that affects the differentiation and ultimately the function of effector T cells

    Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging.

    Get PDF
    The magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (TFH) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. Here we show that TFH cell localization is critical for the quality of the antibody response and for the expansion of the FDC network upon immunization. The smaller GC and compressed FDC network in aged mice were corrected by provision of TFH cells that colocalize with FDCs using CXCR5. This demonstrates that the age-dependent defects in the GC response are reversible and shows that TFH cells support stromal cell responses to vaccines

    Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    Get PDF
    BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations

    Accelerated waning of the humoral response to COVID-19 vaccines in obesity

    Get PDF
    Funding: EAVE II is funded by the Medical Research Council (MRC) (MC_PC_19075) with the support of BREATHE—The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant MC_PC_20058) and National Core Studies–Immunity. Additional support was provided through Public Health Scotland, the Scottish Government Director-General Health and Social Care and the University of Edinburgh. The SCORPIO study was supported by the MRC (MR/W020564/1, a core award to J.E.T.; MC_UU_0025/12 and MR/T032413/1, awards to N.J.M.) and the Medical Research Foundation (MRF-057-0002-RG-THAV-C0798). Additional support was provided by NHS Blood and Transplant (WPA15-02 to N.J.M.), the Wellcome Trust (Institutional Strategic Support Fund 204845/Z/16/Z to N.J.M.), Addenbrooke’s Charitable Trust (900239 to N.J.M.) and the NIHR Cambridge Biomedical Research Centre and NIHR BioResource. M.A.L is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) (BBS/E/B/000C0427 and BBS/E/B/000C0428) and is a Lister Institute Fellow and an EMBO Young Investigator. I.M.H. is supported by a Cambridge Institute for Medical Research PhD studentship. H.J.S. is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (109407), and a BBSRC institutional program grant (BBS/E/B/000C0433). I.S.F. is supported by the Wellcome Trust (207462/Z/17/Z), the Botnar Fondation, the Bernard Wolfe Health Neuroscience Endowment and an NIHR Senior Investigator Award.Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60–1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5–24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.Publisher PDFPeer reviewe

    Accretion processes in the galaxy cluster Hydra A/Abell 780

    No full text
    Context. Clusters of galaxies evolve and accrete mass, mostly from small galaxy systems. Aims. Our aim is to study the velocity field of the galaxy cluster Abell 780, which is known for the powerful radio source Hydra A at its center and where a spectacular X-ray tail associated with the galaxy LEDA 87445 has been discovered. Methods. Our analysis is based on the new spectroscopic data for hundreds of galaxies obtained with the Italian Telescopio Nazionale Galileo and the Very Large Telescope. We have constructed a redshift catalog of 623 galaxies and selected a sample of 126 cluster members. We analyzed the internal structure of the cluster using a number of techniques. Results. We estimate the mean redshift z = 0.0545, the line-of-sight velocity dispersion σV ∼ 800 km s−1, and the dynamical mass M200 ∼ 5.4 × 1014 M⊙. The global properties of Abell 780 are typical of relaxed clusters. On a smaller scale, we can detect the presence of a galaxy group associated with LEDA 87445 in projected phase space. The mean velocity and position of the center of the group agree well with the velocity and position of LEDA 87445. We estimate the following parameters of the collision. The group is characterized by a higher velocity relative to the main system. It is infalling at a rest frame velocity of Vrf ∼ +870 km s−1 and lies at a projected distance of D ∼ 1.1 Mpc to the south, slightly southeast of the cluster center. The mass ratio of the group to the cluster is ∼1:5. We also find evidence of an asymmetry in the velocity distribution of galaxies in the inner cluster region, which might be related to a small low-velocity group detected as a substructure at Vrf ∼ −750 km s−1. Conclusions. We conclude that A780, although dynamically relaxed at first sight, contains small substructures that may have some impact on the energetics of the core region
    corecore