21 research outputs found

    Automatic head computed tomography image noise quantification with deep learning

    Get PDF
    Purpose: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.Methods: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (N-train = 37, N-test( )= 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment.Results: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions.Conclusions: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.Peer reviewe

    Unsupervised denoising for sparse multi-spectral computed tomography

    Full text link
    Multi-energy computed tomography (CT) with photon counting detectors (PCDs) enables spectral imaging as PCDs can assign the incoming photons to specific energy channels. However, PCDs with many spectral channels drastically increase the computational complexity of the CT reconstruction, and bespoke reconstruction algorithms need fine-tuning to varying noise statistics. \rev{Especially if many projections are taken, a large amount of data has to be collected and stored. Sparse view CT is one solution for data reduction. However, these issues are especially exacerbated when sparse imaging scenarios are encountered due to a significant reduction in photon counts.} In this work, we investigate the suitability of learning-based improvements to the challenging task of obtaining high-quality reconstructions from sparse measurements for a 64-channel PCD-CT. In particular, to overcome missing reference data for the training procedure, we propose an unsupervised denoising and artefact removal approach by exploiting different filter functions in the reconstruction and an explicit coupling of spectral channels with the nuclear norm. Performance is assessed on both simulated synthetic data and the openly available experimental Multi-Spectral Imaging via Computed Tomography (MUSIC) dataset. We compared the quality of our unsupervised method to iterative total nuclear variation regularized reconstructions and a supervised denoiser trained with reference data. We show that improved reconstruction quality can be achieved with flexibility on noise statistics and effective suppression of streaking artefacts when using unsupervised denoising with spectral coupling

    Local edge computing for radiological image reconstruction and computer-assisted detection: A feasibility study

    Get PDF
    Computational requirements for data processing at different stages of the radiology value chain are increasing. Cone beam computed tomography (CBCT) is a diagnostic imaging technique used in dental and extremity imaging, involving a highly demanding image reconstruction task. In turn, artificial intelligence (AI) assisted diagnostics are becoming increasingly popular, thus increasing the use of computation resources. Furthermore, the need for fully independent imaging units outside radiology departments and with remotely performed diagnostics emphasize the need for wireless connectivity between the imaging unit and hospital infrastructure. In this feasibility study, we propose an approach based on a distributed edge-cloud computing platform, consisting of small-scale local edge nodes, edge servers with traditional cloud resources to perform data processing tasks in radiology. We are interested in the use of local computing resources with Graphics Processing Units (GPUs), in our case Jetson Xavier NX, for hosting the algorithms for two use-cases, namely image reconstruction in cone beam computed tomography and AI-assisted cancer detection from mammographic images. Particularly, we wanted to determine the technical requirements for local edge computing platform for these two tasks and whether CBCT image reconstruction and breast cancer detection tasks are possible in a diagnostically acceptable time frame. We validated the use-cases and the proposed edge computing platform in two stages. First, the algorithms were validated use-case-wise by comparing the computing performance of the edge nodes against a reference setup (regular workstation). Second, we performed qualitative evaluation on the edge computing platform by running the algorithms as nanoservices. Our results, obtained through real-life prototyping, indicate that it is possible and technically feasible to run both reconstruction and AI-assisted image analysis functions in a diagnostically acceptable computing time. Furthermore, based on the qualitative evaluation, we confirmed that the local edge computing capacity can be scaled up and down during runtime by adding or removing edge devices without the need for manual reconfigurations. We also found all previously implemented software components to be transferable as such. Overall, the results are promising and help in developing future applications, e.g., in mobile imaging scenarios, where such a platform is beneficial

    Generative adversarial networks improve interior computed tomography angiography reconstruction

    Get PDF
    In interior computed tomography (CT), the x-ray beam is collimated to a limited field-of-view (FOV) (e.g. the volume of the heart) to decrease exposure to adjacent organs, but the resulting image has a severe truncation artifact when reconstructed with traditional filtered back-projection (FBP) type algorithms. In some examinations, such as cardiac or dentomaxillofacial imaging, interior CT could be used to achieve further dose reductions. In this work, we describe a deep learning (DL) method to obtain artifact-free images from interior CT angiography. Our method employs the Pix2Pix generative adversarial network (GAN) in a two-stage process: (1) An extended sinogram is computed from a truncated sinogram with one GAN model, and (2) the FBP reconstruction obtained from that extended sinogram is used as an input to another GAN model that improves the quality of the interior reconstruction. Our double GAN (DGAN) model was trained with 10 000 truncated sinograms simulated from real computed tomography angiography slice images. Truncated sinograms (input) were used with original slice images (target) in training to yield an improved reconstruction (output). DGAN performance was compared with the adaptive de-truncation method, total variation regularization, and two reference DL methods: FBPConvNet, and U-Net-based sinogram extension (ES-UNet). Our DGAN method and ES-UNet yielded the best root-mean-squared error (RMSE) (0.03 +/- 0.01), and structural similarity index (SSIM) (0.92 +/- 0.02) values, and reference DL methods also yielded good results. Furthermore, we performed an extended FOV analysis by increasing the reconstruction area by 10% and 20%. In both cases, the DGAN approach yielded best results at RMSE (0.03 +/- 0.01 and 0.04 +/- 0.01 for the 10% and 20% cases, respectively), peak signal-to-noise ratio (PSNR) (30.5 +/- 2.6 dB and 28.6 +/- 2.6 dB), and SSIM (0.90 +/- 0.02 and 0.87 +/- 0.02). In conclusion, our method was able to not only reconstruct the interior region with improved image quality, but also extend the reconstructed FOV by 20%.Peer reviewe

    Ultrasound backscattering is anisotropic in bovine articular cartilage

    No full text
    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized.We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use

    Differences in acoustic impedance of fresh and embedded human trabecular bone samples - Scanning acoustic microscopy and numerical evaluation

    No full text
    Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 ÎĽm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone

    Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes

    No full text
    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 Ă— 10 cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound

    Optimizing iterative reconstruction for quantification of calcium hydroxyapatite with photon counting flat-detector computed tomography:a cardiac phantom study

    No full text
    Abstract Purpose: Coronary artery calcium (CAC) scoring with computed tomography (CT) has been proposed as a screening tool for coronary artery disease, but concerns remain regarding the radiation dose of CT CAC scoring. Photon counting detectors and iterative reconstruction (IR) are promising approaches for patient dose reduction, yet the preservation of CAC scores with IR has been questioned. The purpose of this study was to investigate the applicability of IR for quantification of CAC using a photon counting flat-detector. Approach: We imaged a cardiac rod phantom with calcium hydroxyapatite (CaHA) inserts with different noise levels using an experimental photon counting flat-detector CT setup to simulate the clinical CAC scoring protocol. We applied filtered back projection (FBP) and two IR algorithms with different regularization strengths. We compared the air kerma values, image quality parameters [noise magnitude, noise power spectrum, modulation transfer function (MTF), and contrast-to-noise ratio], and CaHA quantification accuracy between FBP and IR. Results: IR regularization strength influenced CAC scores significantly (p  &lt;  0.05). The CAC volumes and scores between FBP and IRs were the most similar when the IR regularization strength was chosen to match the MTF of the FBP reconstruction. Conclusion: When the regularization strength is selected to produce comparable spatial resolution with FBP, IR can yield comparable CAC scores and volumes with FBP. Nonetheless, at the lowest radiation dose setting, FBP produced more accurate CAC volumes and scores compared to IR, and no improved CAC scoring accuracy at low dose was demonstrated with the utilized IR methods

    Quantitative dual contrast photon-counting computed tomography for assessment of articular cartilage health

    Get PDF
    Photon-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+(targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n=53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.Peer reviewe

    Tâ‚‚-weighted magnetic resonance imaging texture as predictor of low back pain:a texture analysis-based classification pipeline to symptomatic and asymptomatic cases

    No full text
    Abstract Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population-based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T₂-weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin-echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow-up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4-L5 and L5-S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area-under-curve of 0.91. To conclude, textural features from T₂-weighted magnetic resonance images can be applied in low back pain classification
    corecore