54 research outputs found

    Distributed and Decentralized Kalman Filtering for Cascaded Fractional Order Systems

    Get PDF
    This paper presents a distributed Kalman filter algorithm for cascaded systems of fractional order. Certain conditions are introduced under which a division of a fractional system into cascaded subsystems is possible. A functional distribution of a large scale system and of the state estimation algorithm leads to smaller and scalable nodes with reduced memory and computational effort. Since each subsystem performs its calculations locally, a central processing node is not needed. All data which are required by subsequent nodes are communicated to them unidirectionally. Also a comparison between the Fractional Kalman Filter (FKF) and the Cascaded Fractional Kalman Filter (CFKF) is given by an example

    LTER IMC community of practice: a learning environment

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Includes bibliographical references.Communities of practice are groups of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. A community of practice is not merely a group of people having the same job or a network of connections between people

    Practical Application of the Wave-Trap Concept in Battery–Cell Equalizers

    Full text link

    Manifiesto: geología para una nueva cultura de la tierra

    Get PDF
    Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu

    Genomic Standards Consortium projects

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 599-601, doi:10.4056/sigs.5559680.The Genomic Standards Consortium (GSC) is an open-membership community working towards the development, implementation and harmonization of standards in the field of genomics. The mission of the GSC is to improve digital descriptions of genomes, metagenomes and gene marker sequences. The GSC started in late 2005 with the defined task of establishing what is now termed the “Minimum Information about any Sequence” (MIxS) standard [1,2]. As an outgrowth of the activities surrounding the creation and implementation of the MixS standard there are now 18 projects within the GSC [3]. These efforts cover an ever widening range of standardization activities. Given the growth of projects and to promote transparency, participation and adoption the GSC has developed a “GSC Project Description Template”. A complete set of GSC Project Descriptions and the template are available on the GSC website. The GSC has an open policy of participation and continues to welcome new efforts. Any projects that facilitate the standard descriptions and exchange of data are potential candidates for inclusion under the GSC umbrella. Areas that expand the scope of the GSC are encouraged. Through these collective activities we hope to help foster the growth of the ‘bioinformatics standards’ community. For more information on the GSC and its range of projects, please see http://gensc.org/

    Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2, 445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionizationtime of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD
    corecore