7 research outputs found

    Understanding perirhinal contributions to perception and memory: Evidence through the lens of selective perirhinal damage

    Get PDF
    © 2019 Elsevier Ltd Although a memory systems view of the medial temporal lobe (MTL) has been widely influential in understanding how memory processes are implemented, a large body of work across humans and animals has converged on the idea that the MTL can support various other decisions, beyond those involving memory. Specifically, recent work suggests that perception of and memory for visual representations may interact in order to support ongoing cognition. However, given considerations involving lesion profiles in neuropsychological investigations and the correlational nature of fMRI, the precise nature of representations supported by the MTL are not well understood in humans. In the present investigation, three patients with highly specific lesions to MTL were administered a task that taxed perceptual and mnemonic judgments with highly similar face stimuli. A striking double dissociation was observed such that I.R., a patient with a cyst localized to right posterior PRc, displayed a significant impairment in perceptual discriminations, whereas patient A.N., an individual with a lesion in right posterior parahippocampal cortex and the tail of the right hippocampus, and S.D., an individual with bilateral hippocampal damage, did not display impaired performance on the perceptual task. A.N. and S.D. did, however, show impairments in memory performance, whereas patient I.R. did not. These results causally implicate right PRc in successful perceptual oddity judgments, however they suggest that representations supported by PRc are not necessary for correct mnemonic judgments, even in situations of high featural overlap

    Dynamic integration of conceptual information during learning.

    No full text

    Dynamic integration of conceptual information during learning.

    No full text
    The development and application of concepts is a critical component of cognition. Although concepts can be formed on the basis of simple perceptual or semantic features, conceptual representations can also capitalize on similarities across feature relationships. By representing these types of higher-order relationships, concepts can simplify the learning problem and facilitate decisions. Despite this, little is known about the neural mechanisms that support the construction and deployment of these kinds of higher-order concepts during learning. To address this question, we combined a carefully designed associative learning task with computational model-based functional magnetic resonance imaging (fMRI). Participants were scanned as they learned and made decisions about sixteen pairs of cues and associated outcomes. Associations were structured such that individual cues shared feature relationships, operationalized as shared patterns of cue pair-outcome associations. In order to capture the large number of possible conceptual representational structures that participants might employ and to evaluate how conceptual representations are used during learning, we leveraged a well-specified Bayesian computational model of category learning [1]. Behavioral and model-based results revealed that participants who displayed a tendency to link experiences in memory benefitted from faster learning rates, suggesting that the use of the conceptual structure in the task facilitated decisions about cue pair-outcome associations. Model-based fMRI analyses revealed that trial-by-trial integration of cue information into higher-order conceptual representations was supported by an anterior temporal (AT) network of regions previously implicated in representing complex conjunctions of features and meaning-based information

    Hur skall fastighetsskattesatsen för småhus bestämmas?

    Get PDF
    <div><p>The development and application of concepts is a critical component of cognition. Although concepts can be formed on the basis of simple perceptual or semantic features, conceptual representations can also capitalize on similarities across feature relationships. By representing these types of higher-order relationships, concepts can simplify the learning problem and facilitate decisions. Despite this, little is known about the neural mechanisms that support the construction and deployment of these kinds of higher-order concepts during learning. To address this question, we combined a carefully designed associative learning task with computational model-based functional magnetic resonance imaging (fMRI). Participants were scanned as they learned and made decisions about sixteen pairs of cues and associated outcomes. Associations were structured such that individual cues shared feature relationships, operationalized as shared patterns of cue pair-outcome associations. In order to capture the large number of possible conceptual representational structures that participants might employ and to evaluate how conceptual representations are used during learning, we leveraged a well-specified Bayesian computational model of category learning [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0207357#pone.0207357.ref001" target="_blank">1</a>]. Behavioral and model-based results revealed that participants who displayed a tendency to link experiences in memory benefitted from faster learning rates, suggesting that the use of the conceptual structure in the task facilitated decisions about cue pair-outcome associations. Model-based fMRI analyses revealed that trial-by-trial integration of cue information into higher-order conceptual representations was supported by an anterior temporal (AT) network of regions previously implicated in representing complex conjunctions of features and meaning-based information.</p></div
    corecore