7,023 research outputs found

    Trace element geochemistry of peridotites from the Izu-Bonin-Mariana Forearc, Leg 125

    No full text
    Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction. Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed

    Electronic structure and light-induced conductivity in a transparent refractory oxide

    Get PDF
    Combined first-principles and experimental investigations reveal the underlying mechanism responsible for a drastic change of the conductivity (by 10 orders of magnitude) following hydrogen annealing and UV-irradiation in a transparent oxide, 12CaO.7Al2O3, found by Hayashi et al. The charge transport associated with photo-excitation of an electron from H, occurs by electron hopping. We identify the atoms participating in the hops, determine the exact paths for the carrier migration, estimate the temperature behavior of the hopping transport and predict a way to enhance the conductivity by specific doping.Comment: 4 pages including 4 figure

    Safety Considerations and Proposed Workflow for Laboratory-Scale Chemical Synthesis by Ball Milling

    Get PDF
    Chemical reactions that take place in a ball mill and in the absence of a bulk reaction solvent present different safety profiles to stirred solution reactions. Herein, we present and describe steps that a researcher may take to better ensure that they have considered some of the hazards and measures that emerge and minimize the risk to themselves and their colleagues

    Non exponential relaxation in fully frustrated models

    Full text link
    We study the dynamical properties of the fully frustrated Ising model. Due to the absence of disorder the model, contrary to spin glass, does not exhibit any Griffiths phase, which has been associated to non-exponential relaxation dynamics. Nevertheless we find numerically that the model exhibits a stretched exponential behavior below a temperature T_p corresponding to the percolation transition of the Kasteleyn-Fortuin clusters. We have also found that the critical behavior of this clusters for a fully frustrated q-state spin model at the percolation threshold is strongly affected by frustration. In fact while in absence of frustration the q=1 limit gives random percolation, in presence of frustration the critical behavior is in the same universality class of the ferromagnetic q=1/2-state Potts model.Comment: 7 pages, RevTeX, 11 figs, to appear on Physical Review

    Managing cryptic biodiversity: fine-scale intralacustrine speciation along a benthic gradient in Alpine whitefish ( Coregonus spp.)

    Get PDF
    Whitefish (Coregonus spp.) are an important catch for many freshwater fisheries, particularly in Switzerland. In support of this, supplemental stocking of whitefish species is carried out, despite lacking complete knowledge of the extent, distribution and origin of whitefish diversity in these lakes, potentially threatening local endemics via artificial gene flow. Here, we investigate phenotypic and genetic differentiation among coexisting whitefish species spawning along a depth gradient in a subalpine Swiss lake to better delineate intralacustrine whitefish biodiversity. We find depth-related clines in adaptive morphology and in neutral genetic markers. This individual variation is structured in three distinct clusters with spatial overlap. Individual genetic distances correlate strongly with differences in growth rate and gill-raker number, consistent with predictions of isolation-by-adaptation and ecological speciation. Genetic differentiation between species suggests reproductive isolation, despite demographic admixture on spawning grounds. Our results are consistent with clinal speciation resulting in three species coexisting in close ecological parapatry, one (C. sp. “benthic intermediate”) being previously unknown. A second unknown species spawning in close proximity, was found to be of potential allochthonous origin. This study highlights the importance of taxonomically unbiased sampling strategies to both understand evolutionary mechanisms structuring biodiversity and to better inform conservation and fisheries management

    The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    Get PDF
    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 3–8 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.22–0.45, P < .005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals
    corecore