2,605 research outputs found

    Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra

    Full text link
    The nature of quasi-periodic pulsations in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra, also referred to as 'red' noise processes, are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPP is needed. Here we adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power law properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM, Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required in order to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum, rather than a direct signature of oscillating components or structures. However, for the flare of 1998 May 8, strong evidence for the existence of an explicit oscillation with P ~ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh HXT data. We conclude that, most likely, many previously analysed events in the literature may be similarly described in terms of power laws in the flare Fourier power spectrum, without the need to invoke a narrowband, oscillatory component. As a result the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.Comment: 11 pages, 7 figures, 1 table. Accepted for publication in The Astrophysical Journa

    Characteristics of magnetoacoustic sausage modes

    Get PDF
    Aims: We perform an advanced study of the fast magnetoacoustic sausage oscillations of coronal loops in the context of MHD coronal seismology to establish the dependence of the sausage mode period and cut-off wavenumber on the plasma-β\beta of the loop-filling plasma. A parametric study of the ratios for different harmonics of the mode is also carried out. Methods: Full magnetohydrodynamic numerical simulations were performed using Lare2d, simulating hot, dense loops in a magnetic slab environment. The symmetric Epstein profile and a simple step-function profile were both used to model the density structure of the simulated loops. Analytical expressions for the cut-off wavenumber and the harmonic ratio between the second longitudinal harmonic and the fundamental were also examined. Results: It was established that the period of the global sausage mode is only very weakly dependent on the value of the plasma-β\beta inside a coronal loop, which justifies the application of this model to hot flaring loops. The cut-off wavenumber kc for the global mode was found to be dependent on both internal and external values of the plasma-β\beta, again only weakly. By far the most important factor in this case was the value of the density contrast ratio between the loop and the surroundings. Finally, the deviation of the harmonic ratio P1/2P2 from the ideal non-dispersive case was shown to be considerable at low k, again strongly dependent on plasma density. Quantifying the behaviour of the cut-off wavenumber and the harmonic ratio has significant applications to the field of coronal seismology

    Quasi-periodic pulsations in the gamma-ray emission of a solar flare

    Get PDF
    Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop

    DNA fingerprinting of Paecilomyces strains of potential use for the biological control of pests.

    Get PDF
    Made available in DSpace on 2018-06-06T00:58:57Z (GMT). No. of bitstreams: 1 ID278211.pdf: 310735 bytes, checksum: ad02f1cb9a27b440fe5a2ad2c11149d8 (MD5) Previous issue date: 2007-01-0

    Instrumental oscillations in RHESSI count rates during solar flares

    Full text link
    Aims: We seek to illustrate the analysis problems posed by RHESSI spacecraft motion by studying persistent instrumental oscillations found in the lightcurves measured by RHESSI's X-ray detectors in the 6-12 keV and 12-25 keV energy range during the decay phase of the flares of 2004 November 4 and 6. Methods: The various motions of the RHESSI spacecraft which may contribute to the manifestation of oscillations are studied. The response of each detector in turn is also investigated. Results: We find that on 2004 November 6 the observed oscillations correspond to the nutation period of the RHESSI instrument. These oscillations are also of greatest amplitude for detector 5, while in the lightcurves of many other detectors the oscillations are small or undetectable. We also find that the variation in detector pointing is much larger during this flare than the counterexample of 2004 November 4. Conclusions: Sufficiently large nutation motions of the RHESSI spacecraft lead to clearly observable oscillations in count rates, posing a significant hazard for data analysis. This issue is particularly problematic for detector 5 due to its design characteristics. Dynamic correction of the RHESSI counts, accounting for the livetime, data gaps, and the transmission of the bi-grid collimator of each detector, is required to overcome this issue. These corrections should be applied to all future oscillation studies.Comment: 8 pages, 10 figure

    A mutant of Metarhizium anisopliae var. acridum with enhanced submerged conidiation.

    Get PDF
    Made available in DSpace on 2018-06-06T01:01:38Z (GMT). No. of bitstreams: 1 ID278831.pdf: 343982 bytes, checksum: 1b1ebb921fe53464e93c15e17e4d406c (MD5) Previous issue date: 2007-01-16bitstream/item/178116/1/ID-27883-1.pd

    Geologic analysis of ERTS-1 imagery for the State of New Mexico

    Get PDF
    There are no author-identified significant results in this report
    corecore