Aims: We seek to illustrate the analysis problems posed by RHESSI spacecraft
motion by studying persistent instrumental oscillations found in the
lightcurves measured by RHESSI's X-ray detectors in the 6-12 keV and 12-25 keV
energy range during the decay phase of the flares of 2004 November 4 and 6.
Methods: The various motions of the RHESSI spacecraft which may contribute to
the manifestation of oscillations are studied. The response of each detector in
turn is also investigated. Results: We find that on 2004 November 6 the
observed oscillations correspond to the nutation period of the RHESSI
instrument. These oscillations are also of greatest amplitude for detector 5,
while in the lightcurves of many other detectors the oscillations are small or
undetectable. We also find that the variation in detector pointing is much
larger during this flare than the counterexample of 2004 November 4.
Conclusions: Sufficiently large nutation motions of the RHESSI spacecraft lead
to clearly observable oscillations in count rates, posing a significant hazard
for data analysis. This issue is particularly problematic for detector 5 due to
its design characteristics. Dynamic correction of the RHESSI counts, accounting
for the livetime, data gaps, and the transmission of the bi-grid collimator of
each detector, is required to overcome this issue. These corrections should be
applied to all future oscillation studies.Comment: 8 pages, 10 figure