228 research outputs found
Lactate signalling regulates fungal β-glucan masking and immune evasion
AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin
Sugarcane stem borers of the Colombian Cauca River Valley: current pest status, biology, and control
Citation: Vargas, G., Gomez, L. A., & Michaud, J. P. (2015). Sugarcane stem borers of the Colombian Cauca River Valley: current pest status, biology, and control. Florida Entomologist, 98(2), 728-735. Retrieved from ://WOS:000356451400049Sugarcane stem borers of the genus of Diatraea (Lepidoptera: Crambidae) form a species complex that causes serious economic losses to sugarcane production in the Cauca River Valley and other regions of Colombia. Two primary species, Diatraea saccharalis (F.) and D. indigenella Dyar and Heinrich, have been effectively managed for more than 4 decades through augmentative releases of the tachinid flies Lydella minense (Townsend) and Billaea claripalpis (Wulp) (Diptera: Tachinidae) and the egg parasitoid Trichogramma exiguum Pinto & Platner (Hymenoptera: Trichogrammatidae). Here we review the current pest status of Diatraea species, damage assessment protocols, management tactics, and the environmental factors and cultural practices that can affect biological control outcomes. Recent changes in the cultivars grown have the potential to increase pest populations and diminish biological control efficacy. Additionally, recent outbreaks of new Diatraea species may further increase overall pest pressure. Thus, there is a need to develop supplementary tactics for the management of these pests that will be compatible with biological control, as well as more reliable protocols for assessing host plant resistance against the increase in infestation intensity
Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene
The production of ornamentals is an important global industry, with Lilium being one of the six major bulb crops in the world. The international trade in ornamentals is in the order of £60-75 billion and is expected to increase worldwide by 2-4 % per annum. The continued success of the floriculture industry depends on the introduction of new species/cultivars with major alterations in key agronomic characteristics, such as resistance to pathogens. Fungal diseases are the cause of reduced yields and marketable quality of cultivated plants, including ornamental species. The fungal pathogen Botrytis causes extreme economic losses to a wide range of crop species, including ornamentals such as Lilium. Agrobacterium-mediated transformation was used to develop Lilium oriental cv. ‘Star Gazer’ plants that ectopically overexpress the Rice Chitinase 10 gene (RCH10), under control of the CaMV35S promoter. Levels of conferred resistance linked to chitinase expression were evaluated by infection with Botrytis cinerea; sporulation was reduced in an in vitro assay and the relative expression of the RCH10 gene was determined by quantitative Reverse-Transcriptase PCR. The extent of resistance to Botrytis, compared to that of the wild type plants, showed a direct correlation with the level of chitinase gene expression. Transgenic plants grown to flowering showed no detrimental phenotypic effects associated with transgene expression. This is the first report of Lilium plants with resistance to Botrytis cinerea generated by a transgenic approach
Evaluation of a Microbial Inhibitor in Artificial Diets of a Generalist Caterpillar, Heliothis virescens
Controlling microbial growth in artificial diets is a key component in the rearing of laboratory insects. In this study an antimicrobial agent, Diet Antimicrobial Agent (DAA), was tested for its ability to suppress microbial growth on a range of different diets, and for its effect on larval and pupal performance of individuals from two different strains of Heliothis virescens Fabricus (Lepidoptera: Noctuidae). In the first experiment, it was found that the presence of DAA in a pinto bean-based diet was highly effective at suppressing microbial growth relative to other methods, and that survival of caterpillars on diets with DAA was superior to other treatments. Caterpillars also performed best on diets with DAA, although this may have been the result of laboratory selection pressure as these caterpillars had been reared on pinto bean-based diets with DAA for several hundred generations. A second experiment was conducted, using different diets and a different strain of H. virescens to more fully evaluate DAA. Here it was found that DAA significantly suppressed microbial growth and development, particularly in synthetic diets. There was no significant effect of DAA on pupal development time or mass gain. There was a statistically significant effect of DAA on eclosion time for two of the diets, although the effect did not seem to be biologically meaningful. The findings suggest that DAA is an effective suppressor of microbial growth on artificial diets, and that its net effect on developing diet-reared insects is neutral
Alzheimer's pathology targets distinct memory networks in the ageing brain
Alzheimer’s disease researchers have been intrigued by the selective regional vulnerability of the brain to amyloid-β plaques and tau neurofibrillary tangles. Post-mortem studies indicate that in ageing and Alzheimer’s disease tau tangles deposit early in the transentorhinal cortex, a region located in the anterior-temporal lobe that is critical for object memory. In contrast, amyloid-β pathology seems to target a posterior-medial network that subserves spatial memory. In the current study, we tested whether anterior-temporal and posterior-medial brain regions are selectively vulnerable to tau and amyloid-β deposition in the progression from ageing to Alzheimer’s disease and whether this is reflected in domain-specific behavioural deficits and neural dysfunction. 11C-PiB PET and 18F-flortaucipir uptake was quantified in a sample of 131 cognitively normal adults (age: 20–93 years; 47 amyloid-β-positive) and 20 amyloid-β-positive patients with mild cognitive impairment or Alzheimer’s disease dementia (65–95 years). Tau burden was relatively higher in anterior-temporal regions in normal ageing and this difference was further pronounced in the presence of amyloid-β and cognitive impairment, indicating exacerbation of ageing-related processes in Alzheimer’s disease. In contrast, amyloid-β deposition dominated in posterior-medial regions. A subsample of 50 cognitively normal older (26 amyloid-β-positive) and 25 young adults performed an object and scene memory task while functional MRI data were acquired. Group comparisons showed that tau-positive (n = 18) compared to tau-negative (n = 32) older adults showed lower mnemonic discrimination of object relative to scene images [t(48) = −3.2, P = 0.002]. In a multiple regression model including regional measures of both pathologies, higher anterior-temporal flortaucipir (tau) was related to relatively worse object performance (P = 0.010, r = −0.376), whereas higher posterior-medial PiB (amyloid-β) was related to worse scene performance (P = 0.037, r = 0.309). The functional MRI data revealed that tau burden (but not amyloid-β) was associated with increased task activation in both systems and a loss of functional specificity, or dedifferentiation, in posterior-medial regions. The loss of functional specificity was related to worse memory. Our study shows a regional dissociation of Alzheimer’s disease pathologies to distinct memory networks. While our data are cross-sectional, they indicate that with ageing, tau deposits mainly in the anterior-temporal system, which results in deficits in mnemonic object discrimination. As Alzheimer’s disease develops, amyloid-β deposits preferentially in posterior-medial regions additionally compromising scene discrimination and anterior-temporal tau deposition worsens further. Finally, our findings propose that the progression of tau pathology is linked to aberrant activation and dedifferentiation of specialized memory networks that is detrimental to memory function
Recommended from our members
Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota
Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same physical niche spaces with both affecting host nutrition and health. However, associations between the two are poorly understood. Here we used the commonly parasitized European shag (Phalacrocorax aristotelis) as a model wild host. Forty live adults from the same colony were sampled. Endoscopy was employed to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment in the proventriculus, diverting host immune responses away from themselves. This study, within live wild animals, provides a vital foundation to better understand the mechanisms that underpin the three-way relationship between helminths, microbiota and hosts
Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence
<p>Abstract</p> <p>Background</p> <p>Entomopathogenic fungi <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>isolates have been shown to infect and reduce the survival of mosquito vectors.</p> <p>Methods</p> <p>Here four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and persistence of the isolates <it>M. anisopliae </it>ICIPE-30 and <it>B. bassiana </it>I93-925 on infection and survival rates of female <it>Anopheles gambiae sensu stricto</it>. Test concentrations and exposure times ranged between 1 × 10<sup>7 </sup>- 4 × 10<sup>10 </sup>conidia m<sup>-2 </sup>and 15 min - 6 h. In co-formulations, 2 × 10<sup>10 </sup>conidia m<sup>-2 </sup>of both fungus isolates were mixed at ratios of 4:1, 2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 10<sup>9</sup>, 2 × 10<sup>10 </sup>or 4 × 10<sup>10</sup>.</p> <p>Results</p> <p>Mosquito survival varied with conidia concentration; 2 × 10<sup>10 </sup>conidia m<sup>-2 </sup>was the concentration above which no further reductions in survival were detectable for both isolates of fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still achieved considerable mortality rates (100% mortality by 14 d) of mosquitoes, but at lower speed than with 30 min exposure (100% mortality by 9 d). Conidia remained infective up to 28 d post-application but higher concentrations did not increase persistence.</p> <p>Conclusion</p> <p>Both fungus isolates are effective and persistent at low concentrations and short exposure times.</p
The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila
Infections initiate a signaling loop in which sick animals become anorexic, and the resulting change in diet alters the body's ability to fight infections in good and bad ways
Development of a comparative genomic fingerprinting assay for rapid and high resolution genotyping of Arcobacter butzleri
BACKGROUND: Molecular typing methods are critical for epidemiological investigations, facilitating disease outbreak detection and source identification. Study of the epidemiology of the emerging human pathogen Arcobacter butzleri is currently hampered by the lack of a subtyping method that is easily deployable in the context of routine epidemiological surveillance. In this study we describe a comparative genomic fingerprinting (CGF) method for high-resolution and high-throughput subtyping of A. butzleri. Comparative analysis of the genome sequences of eleven A. butzleri strains, including eight strains newly sequenced as part of this project, was employed to identify accessory genes suitable for generating unique genetic fingerprints for high-resolution subtyping based on gene presence or absence within a strain. RESULTS: A set of eighty-three accessory genes was used to examine the population structure of a dataset comprised of isolates from various sources, including human and non-human animals, sewage, and river water (n=156). A streamlined assay (CGF(40)) based on a subset of 40 genes was subsequently developed through marker optimization. High levels of profile diversity (121 distinct profiles) were observed among the 156 isolates in the dataset, and a high Simpson’s Index of Diversity (ID) observed (ID > 0.969) indicate that the CGF(40) assay possesses high discriminatory power. At the same time, our observation that 115 isolates in this dataset could be assigned to 29 clades with a profile similarity of 90% or greater indicates that the method can be used to identify clades comprised of genetically similar isolates. CONCLUSIONS: The CGF(40) assay described herein combines high resolution and repeatability with high throughput for the rapid characterization of A. butzleri strains. This assay will facilitate the study of the population structure and epidemiology of A. butzleri. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-015-0426-4) contains supplementary material, which is available to authorized users
Bacterial Gut Symbionts Contribute to Seed Digestion in an Omnivorous Beetle
Obligate bacterial symbionts alter the diets of host animals in numerous ways, but the ecological roles of facultative bacterial residents that colonize insect guts remain unclear. Carabid beetles are a common group of beneficial insects appreciated for their ability to consume insect prey and seeds, but the contributions of microbes to diet diversification in this and similar groups of facultative granivores are largely unknown.Using 16S rRNA gene clone libraries and terminal restriction fragment (tRF) length polymorphism analyses of these genes, we examined the bacterial communities within the guts of facultatively granivorous, adult Harpalus pensylvanicus (Carabidae), fed one of five dietary treatments: 1) an untreated Field population, 2) Seeds with antibiotics (seeds were from Chenopodium album), 3) Seeds without antibiotics, 4) Prey with antibiotics (prey were Acheta domesticus eggs), and 5) Prey without antibiotics. The number of seeds and prey consumed by each beetle were recorded following treatment. Harpalus pensylvanicus possessed a fairly simple gut community of approximately 3-4 bacterial operational taxonomic units (OTU) per beetle that were affiliated with the Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Mollicutes. Bacterial communities of the host varied among the diet and antibiotic treatments. The field population and beetles fed seeds without antibiotics had the closest matching bacterial communities, and the communities in the beetles fed antibiotics were more closely related to each other than to those of the beetles that did not receive antibiotics. Antibiotics reduced and altered the bacterial communities found in the beetle guts. Moreover, beetles fed antibiotics ate fewer seeds, and those beetles that harbored the bacterium Enterococcus faecalis consumed more seeds on average than those lacking this symbiont.We conclude that the relationships between the bacterium E. faecalis and this factultative granivore's ability to consume seeds merit further investigation, and that facultative associations with symbiotic bacteria have important implications for the nutritional ecology of their hosts
- …
