37 research outputs found

    Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles

    Get PDF
    Eleven different Fusarium species were isolated from various infected plant materials and screened to select a potential species for the synthesis of silver nanoparticles. All the isolates were identified on the basis of cultural and microscopic characteristics using Fusarium identification keys. For the confirmation of preliminary identified isolates of Fusarium species, online BLAST analysis was carried out. All the eleven species demonstrated the ability for synthesis of silver nanoparticles. This was confirmed by UV-Vis spectroscopy, which gave characteristic peak around 420 nm. Further confirmation of silver nanoparticles was carried out using nanoparticles tracking analysis (NTA), zeta potential, photon correlation spectroscopy (PCS), powder X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The smallest size of silver nanoparticles was synthesized by F. oxysporum (3-25 nm) and largest size silver nanoparticles were synthesized by F. solani (3-50 nm).Onze diferentes espécies de Fusarium foram isoladas a partir de vários materiais vegetais infectados e selecionados para escolher uma espécie potencialmente importante para a síntese de nanopartículas de prata. Todos os isolados foram identificados com base nas características de cultivo e microscópicas usando as chaves de identificação de Fusarium. Para a confirmação e identificação preliminar dos isolados de espécies de Fusarium, a análise BLAST on-line foi utilizada. Das espécies isoladas onze mostraram a capacidade para a síntese de nanopartículas de prata. A síntese de nanopartículas de prata foi confirmada por espectroscopia de UV-Vis que monstrou um pico característico em torno de 420 nm. Além disso, a confirmação da síntese de nanopartículas de prata foi realizada utilizando a análise de rastreamento de nanoparticulas (nanoparticle tracking analysis-NTA), medidas de potencial zeta, espectroscopia de correlação de fótons (PCS), difratometria de raios X de pó (XRD), e microscopia eletrônica de transmissão (TEM). As menores nanopartículas de prata foram sintetizadas por F. oxysporum (3-25 nm), enquanto as maiores foram obtidas com F. solani (3-50 nm).19741982Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Mycosynthesis of metal-containing nanoparticles - Synthesis by ascomycetes and basidiomycetes and their application

    Get PDF
    Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.Web of Science241art. no. 30

    Mycosynthesis of metal-containing nanoparticles-fungal metal resistance and mechanisms of synthesis

    Get PDF
    In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.Web of Science2322art. no. 1408

    Field application of ZnO and TiO2 nanoparticles on agricultural plants

    Get PDF
    Engineered nanoparticles (ENPs) have potential application in precision farming and sustainable agriculture. Studies have shown that ENPs enhance the efficiency of the delivery of agrochemicals and thus, have the potential to positively affect the environment, thereby improving the growth and health of the crops. However, the majority of the research on the effects of ENPs on plants and in agricultural applications have been limited to controlled laboratory conditions. These conditions do not fully consider various aspects inherent to the growth of agricultural plants in fields under changing weather and climate. Some of the most investigated ENPs in the agricultural research area are ZnO nanoparticles (ZnO NPs) and TiO2 nanoparticles (TiO2 NPs). ZnO NPs have the potential to increase crop production and stress resistance, mainly by the slow release of Zn ions to crops. Unlike ZnO NPs, TiO2 NPs have less well-understood means of action, and are generally considered as plant growth promoter. This mini review presents information compiled for ZnO and TiO2 NPs(,) their influence on agricultural plants with emphasis on particularly effect on plant growth, nutrient distribution and pollution remediation under field conditions. It is concluded that in order to gain a broader perspective, more field studies are needed, particularly multigeneration studies, to fully understand the effects of the ENPs on agricultural plants' growth and improvement of their health.Web of Science1111art. no. 228

    Role of nanotechnology in the management of indoor fungi

    Get PDF
    Fungi are ubiquitous in the environment and seek to colonize and grow on diverse materials as part of their life cycle. They constitute complex biofilms on surfaces and deteriorate the indoor air quality even under adverse conditions. They adapt well to changing humidity and temperature conditions, resuming their growth in minutes. Their vital activity generates a large number of pollutants that contribute to bioaerosols, which generate major health problems. The reports published in last few decades pointed out that contaminated environments play an important role in the transmission of infections, especially in hospitals. Advances in the field of nanotechnology have resulted in different and diverse applications. Antimicrobial nanomaterials have been found to be eco‐friendly alternatives to be applied in functional paint and coatings. These ?smart? surfaces could face at nanoscale level the approaching of propagules to avoid their attachment, which is the first stage in biofilm development. In this sense, several nanomaterials, including metal, non‐metal, and hybrids, have been discussed in relation to their antifungal activity in this chapter.Centro de Investigación y Desarrollo en Tecnología de PinturasFacultad de Ciencias Naturales y Muse

    Biogenic silver nanoparticles: What we know and what do we need to know?

    Get PDF
    Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.Web of Science1111art. no. 290

    Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal

    No full text
    The excessive consumption of petroleum resources leads to global warming, fast depletion of petroleum reserves, as well as price instability of gasoline. Thus, there is a strong need for alternative renewable fuels to replace petroleum-derived fuels. The striking features of an alternative fuel include the low carbon footprints, renewability and affordability at manageable prices. Biodiesel, made from waste oils, animal fats, vegetal oils, is a totally renewable and non-toxic liquid fuel which has gained significant attraction in the world. Due to technological advancements in catalytic chemistry, biodiesel can be produced from a variety of feedstock employing a variety of catalysts and recovery technologies. Recently, several ground-breaking advancements have been made in nano-catalyst technology which showed the symmetrical correlation with cost competitive biodiesel production. Nanocatalysts have unique properties such as their selective reactivity, high activation energy and controlled rate of reaction, easy recovery and recyclability. Here, we present an overview of various feedstock used for biodiesel production, their composition and characteristics. The major focus of this review is to appraise the characterization of nanocatalysts, their effect on biodiesel production and methodologies of biodiesel production

    Biomedical applications of metals

    No full text

    Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi

    No full text
    The authors report the biological synthesis of silver nanoparticles (NPs) by Phoma gardeniae (ITCC 4554). The detection of silver NP formation was done by visual observation, and UV-vis spectrophotometer analysis. Further, these mycogenic silver NPs were characterised by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and nanoparticle tracking and analysis system. The TEM analysis revealed the formation of spherical and polydispersed NPs within the range of 10-30 nm. FTIR analysis confirmed the presence of proteins as capping agents. They also evaluated the antimicrobial activity of silver NPs against Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. They found remarkable inhibition of Escherichia coli followed by Staphylococcus aureus, Candida albicans, Salmonella choleraesuis and Pseudomonas aeruginosa as compared with antibiotics. The main aim of the present study was to synthesise mycogenic silver NPs by P. gardeniae and to evaluate their antimicrobial activity in order to find their potential against human pathogenic microbes.92717
    corecore