8 research outputs found

    Efficacy and safety of Privigen® in patients with chronic inflammatory demyelinating polyneuropathy: results of a prospective, single-arm, open-label Phase III study (the PRIMA study)

    Get PDF
    This prospective, multicenter, single-arm, open-label Phase III study aimed to evaluate the efficacy and safety of Privigen (R) (10% liquid human intravenous immunoglobulin [IVIG], stabilized with l-proline) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Patients received one induction dose of Privigen (2g/kg body weight [bw]) and up to seven maintenance doses (1g/kg bw) at 3-week intervals. The primary efficacy endpoint was the responder rate at completion, defined as improvement of 1 point on the adjusted Inflammatory Neuropathy Cause and Treatment (INCAT) disability scale. The preset success criterion was the responder rate being 35%. Of the 31 screened patients, 28 patients were enrolled including 13 (46.4%) IVIG-pretreated patients. The overall responder rate at completion was 60.7% (95% confidence interval [CI]: 42.41%-76.43%). IVIG-pretreated patients demonstrated a higher responder rate than IVIG-naive patients (76.9% vs. 46.7%). The median (25%-75% quantile) INCAT score improved from 3.5 (3.0-4.5) points at baseline to 2.5 (1.0-3.0) points at completion, as did the mean (standard deviation [SD]) maximum grip strength (66.7 [37.24] kPa vs. 80.9 [31.06] kPa) and the median Medical Research Council sum score (67.0 [61.5-72.0] points vs. 75.5 [71.5-79.5] points). Of 108 adverse events (AEs; 0.417 AEs per infusion), 95 AEs (88.0%) were mild or moderate in intensity and resolved by the end of study. Two serious AEs of hemolysis were reported that resolved after discontinuation of treatment. Thus, Privigen provided efficacious and well-tolerated induction and maintenance treatment in patients with CIDP

    A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels

    Get PDF
    Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Ad- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca2\ufe]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na\ufe/K\ufe-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons

    Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel Na<sub>V</sub>1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of Na<sub>V</sub>1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the Na<sub>V</sub>1.7/I228M variant.</p> <p>Methods</p> <p>We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M Na<sub>V</sub>1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel.</p> <p>Results</p> <p>We report three different clinical presentations of the I228M Na<sub>V</sub>1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this Na<sub>V</sub>1.7 variant, two of which are from a single family. We also demonstrate that the Na<sub>V</sub>1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons.</p> <p>Conclusion</p> <p>Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of Na<sub>V</sub>1.7.</p

    Neuropathy-Associated Na(V)1.7 Variant I228M Impairs Integrity of Dorsal Root Ganglion Neuron Axons

    No full text
    Small-fiber neuropathy (SFN) is characterized by injury to small-diameter peripheral nerve axons and intraepidermal nerve fibers (IENF). Although mechanisms underlying loss of IENF in SFN are poorly understood, available data suggest that it results from axonal degeneration and reduced regenerative capacity. Gain-of-function variants in sodium channel Na(V)1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in similar to 30% of patients with idiopathic SFN. In the present study, to determine whether these channel variants can impair axonal integrity, we developed an in vitro assay of DRG neurite length, and examined the effect of 3 SFN-associated variant Na(V)1.7 channels, I228M, M932L/V991L (ML/VL), and I720K, on DRG neurites in vitro. At 3 days after culturing, DRG neurons transfected with I228M channels exhibited similar to 20% reduced neurite length compared to wild-type channels; DRG neurons transfected with ML/VL and I720K variants displayed a trend toward reduced neurite length. I228M-induced reduction in neurite length was ameliorated by the use-dependent sodium channel blocker carbamazepine and by a blocker of reverse Na-Ca exchange. These in vitro observations provide evidence supporting a contribution of the I228M variant Na(V)1.7 channel to impaired regeneration and/or degeneration of sensory axons in idiopathic SFN, and suggest that enhanced sodium channel activity and reverse Na-Ca exchange can contribute to a decrease in length of peripheral sensory axons. ANN NEUROL 2013;73:140-14

    Long-term safety and efficacy of subcutaneous immunoglobulin IgPro20 in CIDP PATH extension study

    No full text
    Objective: To investigate the long-term safety and efficacy of weekly subcutaneous IgPro20 (Hizentra, CSL Behring) in chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: In a 48-week open-label prospective extension study to the PATH study, patients were initially started on 0.2 g/kg or on 0.4 g/kg weekly and-if clinically stable-switched to 0.2 g/kg weekly after 24 weeks. Upon CIDP relapse on the 0.2 g/kg dose, 0.4 g/kg was (re)initiated. CIDP relapse was defined as a deterioration by at least 1 point in the total adjusted Inflammatory Neuropathy Cause and Treatment score. Results: Eighty-two patients were enrolled. Sixty-two patients initially received 0.4 g/kg, 20 patients 0.2 g/kg weekly. Seventy-two received both doses during the study. Sixty-six patients (81%) completed the 48-week study duration. Overall relapse rates were 10% in 0.4 g/kg-treated patients and 48% in 0.2 g/kg-treated patients. After dose reduction from 0.4 to 0.2 g/kg, 51% (27/53) of patients relapsed, of whom 92% (24 of 26) improved after reinitiation of the 0.4 g/kg dose. Two-thirds of patients (19/28) who completed the PATH study without relapse remained relapse-free on the 0.2 g/kg dose after dose reduction in the extension study. Sixty-two patients had adverse events (AEs) (76%), of which most were mild or moderate with no related serious AEs. Conclusions: Subcutaneous treatment with IgPro20 provided long-term benefit at both 0.4 and 0.2 g/kg weekly doses with lower relapse rates on the higher dose. Long-term dosing should be individualized to find the most appropriate dose in a given patient. Classification of evidence: This study provides Class IV evidence that for patients with CIDP, long-term treatment with SCIG beyond 24 weeks is safe and efficacious.status: publishe
    corecore