28 research outputs found

    Modelling multiscale aspects of colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole

    Evaluation of an Actinomycin D/VX-680 aurora kinase inhibitor combination in p53-based cyclotherapy

    Get PDF
    p53-based cyclotherapy is proving to be a promising approach to palliate undesired effects of chemotherapy in patients with tumours carrying p53 mutations. For example, pre-treatment of cell cultures with Nutlin-3, a highly-selective inhibitor of the p53-mdm2 interaction, has been successfully used as a cytostatic agent to protect normal cells, but not p53-defective cells, from subsequent treatment with mitotic poisons or S-phase specific drugs. Here we sought to evaluate whether low doses of Actinomycin D (LDActD), a clinically-approved drug and potent p53 activator, could substitute Nutlin-3 in p53-based cyclotherapy. We found that pre-treatment with LDActD before adding the aurora kinase inhibitor VX-680 protects normal fibroblasts from polyploidy and nuclear morphology abnormalities induced by VX-680. However, and although to a lower extent than normal fibroblasts, tumour cell lines bearing p53 mutations were also protected by LDActD (but not Nutlin-3) from VX-680-induced polyploidy. We also report that a difference between the response of p53 wild-type cells and p53-defective cells to the LDActD/VX-680 sequential combination is that only the former fail to enter S-phase and therefore accumulate in G1/G0. We propose that drugs that incorporate into DNA during S-phase may perform better as second drugs than mitotic poisons in cyclotherapy approaches using LDActD as a cytostatic agent

    Autophagic flux blockage by accumulation of weakly basic tenovins leads to elimination of B-Raf mutant tumour cells that survive vemurafenib

    Get PDF
    This work was supported by five grants to Sonia Laín: Vetenskapsrådet (VR) 521-2014-3341, Cancerfonden (Swedish Cancer Society) 150393, CAN 2014/702, Association for International Cancer Research (AICR) 130086, Barncancerfonden (Swedish Childhood Cancer Foundation) TJ-2014-0038, Barncancerfonden (Swedish Childhood Cancer Foundation) PR-2014-0038; two grants to Ravi Bhatia: Leukemia and Lymphoma Society (LLS) 6137-14 and NIH R01 CA95684; one grant to David P Lane: Vetenskapsrådet (VR) 538-2013-8807; one grant to Marcus J G W Ladds: Karolinska Institute KID Doctoral Student Funding; one grant to Gergana Popova: Karolinska Institutet KID Doctoral Student Funding; two grants to Nicholas J Westwood: Cancer Research UK C21383 and Cancer Research UK A6950; two grants to Gerald McInerney: Vetenskapsrådet (VR) 621-2014-4718 and Cancerfonden (Swedish Cancer Society) 150393, CAN 2015/751; and four grants to Emmet McCormack: Kreftforeningen 182735, Kreftforeningen 732200, Halse Vest 911884, Halse Vest 911789.Tenovin-6 is the most studied member of a family of small molecules with antitumour activity in vivo. Previously, it has been determined that part of the effects of tenovin-6 associate with its ability to inhibit SirT1 and activate p53. However, tenovin-6 has also been shown to modulate autophagic flux. Here we show that blockage of autophagic flux occurs in a variety of cell lines in response to certain tenovins, that autophagy blockage occurs regardless of the effect of tenovins on SirT1 or p53, and that this blockage is dependent on the aliphatic tertiary amine side chain of these molecules. Additionally, we evaluate the contribution of this tertiary amine to the elimination of proliferating melanoma cells in culture. We also demonstrate that the presence of the tertiary amine is sufficient to lead to death of tumour cells arrested in G1 phase following vemurafenib treatment. We conclude that blockage of autophagic flux by tenovins is necessary to eliminate melanoma cells that survive B-Raf inhibition and achieve total tumour cell kill and that autophagy blockage can be achieved at a lower concentration than by chloroquine. This observation is of great relevance as relapse and resistance are frequently observed in cancer patients treated with B-Raf inhibitors.Publisher PDFPeer reviewe

    Societal output and use of research performed by health research groups

    Get PDF
    The last decade has seen the evaluation of health research pay more and more attention to societal use and benefits of research in addition to scientific quality, both in qualitative and quantitative ways. This paper elaborates primarily on a quantitative approach to assess societal output and use of research performed by health research groups (societal quality of research). For this reason, one of the Dutch university medical centres (i.e. the Leiden University Medical Center (LUMC)) was chosen as the subject of a pilot study, because of its mission to integrate top patient care with medical, biomedical and healthcare research and education. All research departments were used as units of evaluation within this university medical centre

    Elucidating the interactions between the adhesive and transcriptioanl functions of beta-catenin in normal and cancerous cells

    Get PDF
    Wnt signalling is involved in a wide range of physiological and pathological processes. The presence of an extracellular Wnt stimulus induces cytoplasmic stabilisation and nuclear translocation of beta-catenin, a protein that also plays an essential role in cadherin-mediated adhesion. Two main hypotheses have been proposed concerning the balance between beta-catenin's adhesive and transcriptional functions: either beta-catenin's fate is determined by competition between its binding partners, or Wnt induces folding of beta-catenin into a conformation allocated preferentially to transcription. The experimental data supporting each hypotheses remain inconclusive. In this paper we present a new mathematical model of the Wnt pathway that incorporates beta-catenin's dual function. We use this model to carry out a series of in silico experiments and compare the behaviour of systems governed by each hypothesis. Our analytical results and model simulations provide further insight into the current understanding of Wnt signalling and, in particular, reveal differences in the response of the two modes of interaction between adhesion and signalling in certain in silico settings. We also exploit our model to investigate the impact of the mutations most commonly observed in human colorectal cancer. Simulations show that the amount of functional APC required to maintain a normal phenotype increases with increasing strength of the Wnt signal, a result which illustrates that the environment can substantially influence both tumour initiation and phenotype

    Modulation of p53 C-terminal acetylation by mdm2, p14<sup>ARF</sup>, and cytoplasmic SirT2

    No full text
    Abstract Acetylation of C-terminal lysine residues in the p53 tumor suppressor is associated with increased stability and transcription factor activity. The function, protein level, and acetylation of p53 are downregulated by mdm2, which in its turn is inhibited by the p14ARF tumor suppressor. Here, we show that p14ARF increases the level of p53 acetylated at lysine 382 in a nuclear chromatin-rich fraction. Unexpectedly, this accumulation of p53AcK382 is dramatically enhanced in the presence of ectopic mdm2. In light of these observations, we propose that p14ARF increases the binding of p53–mdm2 complexes to chromatin, thereby limiting the access of protein deacetylases to p53. Supporting this notion, we show that p53AcK382 can be deacetylated in the cytoplasm and that sirtuin SirT2 catalyzes this reaction. These results help understand why inhibition of both SirT1 and SirT2 is needed to achieve effective activation of p53 by small-molecule sirtuin inhibitors. Mol Cancer Ther; 12(4); 471–80. ©2013 AACR.</jats:p
    corecore