43 research outputs found

    American Bar Association Criminal Justice Section Report to the House of Delegates

    Get PDF
    The proposed amendments to the Federal Rules of Evidence, Rules 413-15 regarding the admission of character testimony in cases of sexual abuse and child molestation, have been roundly criticized by the legal community on both substantive and procedural grounds. The ABA has resolved to oppose the substance of these rules, and fear that in addition to the direct concerns regarding the result of the rules, they raise troubling policy issues going forward

    P311, Friend, or Foe of Tissue Fibrosis?

    Get PDF
    P311 was first identified by the group of Studler et al. (1993) in the developing brain. In healthy, but mainly in pathological tissues, P311 is implicated in cell migration and proliferation. Furthermore, evidence in models of tissue fibrosis points to the colocalization with and the stimulation of transforming growth factor β1 by P311. This review provides a comprehensive overview on P311 and discusses its potential as an anti-fibrotic target

    HDAC inhibitors in experimental liver and kidney fibrosis

    Get PDF
    Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models and in vitro models of fibrosis

    Modelling fatty liver disease with mouse liver-derived multicellular spheroids

    Get PDF
    Chronic liver disease can lead to liver fibrosis and ultimately cirrhosis, which is a significant health burden and a major cause of death worldwide. Reliable in vitro models are lacking and thus mono-cultures of cell lines are still used to study liver disease and evaluate candidate anti-fibrotic drugs. We established functional multicellular liver spheroid (MCLS) cultures using primary mouse hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and Kupffer cells. Cell-aggregation and spheroid formation was enhanced with 96-well U-bottom plates generating over ±700 spheroids from one mouse. Extensive characterization showed that MCLS cultures contain functional hepatocytes, quiescent stellate cells, fenestrated sinusoidal endothelium and responsive Kupffer cells that can be maintained for 17 days. MCLS cultures display a fibrotic response upon chronic exposure to acetaminophen, and present steatosis and fibrosis when challenged with free fatty acid and lipopolysaccharides, reminiscent of non-alcoholic fatty liver disease (NAFLD) stages. Treatment of MCLS cultures with potential anti-NAFLD drugs such as Elafibranor, Lanifibranor, Pioglitazone and Obeticholic acid shows that all can inhibit steatosis, but only Elafibranor and especially Lanifibranor inhibit fibrosis. Therefore, primary mouse MCLS cultures can be used to model acute and chronic liver disease and are suitable for the assessment of anti-NAFLD drugs

    Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells.

    Get PDF
    Unveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNA regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs (aHSCs) were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNAs (n = 259), from which 47 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSC-associated miRNAs correlated with more than 6 altered target mRNAs (17,28 ± 10,7 targets/miRNA) whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSC activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSCs was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of the qHSC phenotype and form the basis for understanding the regulatory networks in HSCs

    Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche

    Get PDF
    Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-alpha (LXR-alpha). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-alpha via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity

    Review: Challenges of In Vitro CAF Modelling in Liver Cancers

    No full text
    Primary and secondary liver cancer are the third cause of death in the world, and as the incidence is increasing, liver cancer represents a global health burden. Current treatment strategies are insufficient to permanently cure patients from this devastating disease, and therefore other approaches are under investigation. The importance of cancer-associated fibroblasts (CAFs) in the tumour microenvironment is evident, and many pre-clinical studies have shown increased tumour aggressiveness in the presence of CAFs. However, it remains unclear how hepatic stellate cells are triggered by the tumour to become CAFs and how the recently described CAF subtypes originate and orchestrate pro-tumoural effects. Specialized in vitro systems will be needed to address these questions. In this review, we present the currently used in vitro models to study CAFs in primary and secondary liver cancer and highlight the trend from using oversimplified 2D culture systems to more complex 3D models. Relatively few studies report on the impact of cancer (sub)types on CAFs and the tumour microenvironment, and most studies investigated the impact of secreted factors due to the nature of the models

    Class II HDAC Inhibition Hampers Hepatic Stellate Cell Activation by Induction of MicroRNA-29

    Get PDF
    Background: The conversion of a quiescent vitamin A storing hepatic stellate cell (HSC) to a matrix producing, contractile myofibroblast-like activated HSC is a key event in the onset of liver disease following injury of any aetiology. Previous studies have shown that class I histone deacetylases (HDACs) are involved in the phenotypical changes occurring during stellate cell activation in liver and pancreas. Aims: In the current study we investigate the role of class II HDACs during HSC activation. Methods: We characterized the expression of the class II HDACs freshly isolated mouse HSCs. We inhibited HDAC activity by selective pharmacological inhibition with MC1568, and by repressing class II HDAC gene expression using specific siRNAs. Results: Inhibition of HDAC activity leads to a strong reduction of HSC activation markers alpha-SMA, lysyl oxidase and collagens as well as an inhibition of cell proliferation. Knock down experiments showed that HDAC4 contributes to HSC activation by regulating lysyl oxidase expression. In addition, we observed a strong up regulation of miR-29, a well-known anti-fibrotic miR, upon treatment with MC1568. Our in vivo work suggests that a successful inhibition of class II HDACs could be promising for development of future anti-fibrotic compounds. Conclusions: In conclusion, the use of MC1568 has enabled us to identify a role for class II HDACs regulating miR-29 during HSC activation

    Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29.

    Get PDF
    BACKGROUND: The conversion of a quiescent vitamin A storing hepatic stellate cell (HSC) to a matrix producing, contractile myofibroblast-like activated HSC is a key event in the onset of liver disease following injury of any aetiology. Previous studies have shown that class I histone deacetylases (HDACs) are involved in the phenotypical changes occurring during stellate cell activation in liver and pancreas. AIMS: In the current study we investigate the role of class II HDACs during HSC activation. METHODS: We characterized the expression of the class II HDACs freshly isolated mouse HSCs. We inhibited HDAC activity by selective pharmacological inhibition with MC1568, and by repressing class II HDAC gene expression using specific siRNAs. RESULTS: Inhibition of HDAC activity leads to a strong reduction of HSC activation markers α-SMA, lysyl oxidase and collagens as well as an inhibition of cell proliferation. Knock down experiments showed that HDAC4 contributes to HSC activation by regulating lysyl oxidase expression. In addition, we observed a strong up regulation of miR-29, a well-known anti-fibrotic miR, upon treatment with MC1568. Our in vivo work suggests that a successful inhibition of class II HDACs could be promising for development of future anti-fibrotic compounds. CONCLUSIONS: In conclusion, the use of MC1568 has enabled us to identify a role for class II HDACs regulating miR-29 during HSC activation

    A role for autophagy during hepatic stellate cell activation.

    No full text
    Autophagy is a metabolic process that degrades and recycles intracellular organelles and proteins with many connections to human disease and physiology. We studied the role of autophagy during hepatic stellate cell (HSC) activation, a key event in liver fibrogenesis
    corecore