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Abstract

Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their
inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This
in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC
inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired
wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by
myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs
which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors
against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models
and in vitro models of fibrosis.
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Introduction
Both chronic kidney and chronic liver diseases have high
unmet medical needs, which progressively strain health
budgets worldwide. The chronic nature of both condi-
tions and the need for long term therapy are the basis
for this global burden on the healthcare systems. In
addition, chronic liver disease (CLD) and chronic kidney
disease (CKD) are considered as disorders with high
mortality. It is estimated that annually >100,000 new
patients are diagnosed with CLD in the United States,
contributing to the increasing number of patients who
need organ replacement therapy [1]. Furthermore, about
40% of patients on a waiting list do not receive a liver
transplant due to donor shortage. A recent EASL report
states that approximately 29 million EU inhabitants are
affected by some degree of progressive liver disease,
which equals to 6% of the population [2-5]. The mortal-
ity rate for CKD and diseases of the urinary tract is
about 850,000 deaths every year, which ranks CKD, like
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CLD, in the top 15 of high mortality disorders. More-
over, CKD is associated with an 8- to 10-fold increase in
cardiovascular mortality and is a risk multiplier in
patients with diabetes and hypertension. Although more
common in developing countries, disadvantaged and
minority populations, at least 8% of the population of
Europe currently has some degree of CKD, which means
that roughly 40 million people are affected in the EU.
This figure increases each year and if the present trend
endures, the number of people with CKD will double
over the next decade [6-10].
Review
Fibrosis
Tissue damage triggers both inflammatory and repair
responses that in the case of repeated or chronic injury
results in fibrosis. In organ or tissue fibrosis, the equilib-
rium of extracellular matrix (ECM) formation and deg-
radation is impaired, resulting in excessive deposition of
ECM by an eminent population of myofibroblasts [11].
This dysregulated biosynthetic process, leading to the
accumulation of ECM, can be due to damage from is-
chemia, chemical agents, viral and nonviral infections,
physical injury or immunological attack. The fibrotic
architecture or ECM deposition can be visualized
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experimentally through commonly used histological
stainings, for example, Periodic Acid Schiff, Masson-
Trichrome or Picrosirius Red.
Fibrosis is not only restricted to glomerulosclerosis

and tubulointerstitial fibrosis in kidney or cirrhosis in
liver; there are also pulmonary fibrosis in the lungs,
endomyocardial fibrosis in the heart, myelofibrosis in
the bone marrow, scleroderma in the skin, Crohn’s dis-
ease in the intestine, and systemic sclerosis in skin and
lungs. In all these organs, fibrosis is characterized by the
persistence of ECM-producing myofibroblasts, ineffect-
ive re-epithelialization and variable degrees of inflamma-
tion within the injured tissues [12]. Cellularly, the
‘classical’ source of ECM proteins is due to the expan-
sion and activation of resident fibroblasts into ECM-
producing myofibroblasts (Figure 1). Other origins of
mesenchymal cells, responsible for the exaggerated and
uncontrolled production of collagen and other ECM
proteins in fibrotic disorders is a topic of ongoing re-
search and is yet to be completely elucidated [13-17].
Extensive studies suggest that most myofibroblasts are
derived from tissue-specific fibroblasts and pericytes
[18-20]. Other possible sources are bone marrow-
derived circulating fibrocytes or mesenchymal stem cells
[21-23]. Endothelial cells were also recently found to
be capable of undergoing endothelial-to-mesenchymal
Figure 1 Possible origins of myofibroblast-like cells in liver and kidne
heterogeneous in their origin and behavior. In general, matrix-producing c
respectively portal fibroblasts in the liver and interstitial fibroblasts in the ki
deposition are specialized pericytes, such as hepatic stellate cells and mesa
epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchyma
bone marrow-derived stem cells or fibrocytes could transdifferentiate withi
amount of ECM produced by these cells appears to be negligible.
transition (EndoMT) in the kidney [24]. Finally, epithe-
lial cells of both the liver and kidney are implied to be
able to undergo epithelium-to-mesenchymal transition
(EMT) in vitro as seen during embryogenesis and tumor
metastasis, even though the origin of ECM-proteins
from epithelial cells are a controversial topic in vivo
[20,25-28]. Recent studies concerning EMT during liver
and kidney fibrosis have employed lineage tracing in dif-
ferent animal models. Some of the confusion may origin-
ate from the use of sometimes unspecific markers, such
as fibroblast-specific protein 1 (Fsp1, S100A4) and the
use of transgenic mice models in a not entirely appropri-
ate setting [20,27,29-32]. Excellent reviews describing
the potential role of EMT in both kidney and liver dis-
ease are available for further reading [25,33,34]. The
markedly increasing number of myofibroblasts during
the fibrotic process will lead to structural abnormalities
and decreased organ functions, leading inevitably to fur-
ther disease progression where, for now, artificial or
organ replacement therapy is the only outcome.

Hepatic fibrosis
Fibrosis, or scarring of the liver, is a chronic wound-
healing response that recruits a range of cell types and
mediators to intercept the injury caused by viral infec-
tions, auto-immune, cholestatic and metabolic diseases
y. It is recognized that the fibrogenic cells in both liver and kidney are
ells in chronic wound repair are derived from resident fibroblasts,
dney. Besides fibroblasts, the major contributors to the excessive ECM
ngial cells. In vitro and in vivo evidence is available for the possibility of
l transition (EndoMT). Finally, several studies have suggested that
n adult tissues to form mature matrix-producing cells; however, the
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as well as drugs or alcoholic-induced injury [1]. A cell
type implicated in several important facets of CLD are
hepatic stellate cells (HSCs), as they are the most im-
portant source of matrix and the main origin of myofi-
broblasts in the liver, which renders them an important
target for the treatment of liver fibrosis [35]. HSCs are a
small sinusoidal liver cell population, representing ± 8%
of liver cells. This key cell type, influencing the balance
of matrix secretion and degradation, favoring the accu-
mulation of collagen during fibrogenesis, resides in peri-
sinusoidal recesses between adjacent hepatocytes and
projects long processes (approximately 50 μm) into the
space of Disse parallel to the sinusoidal endothelial cells
[17]. In the adult liver, HSCs are quiescent and are
implicated in the uptake, storage and release of vitamin
A. About 75% of the vitamin A stored in the liver is
accumulated in cytoplasmatic lipid droplets in the stel-
late cells, in the form of retinyl-esters [36].
Another hallmark of the HSCs in normal livers is the

balanced synthesis and degradation of the ECM that
accounts for about 0.5% of the liver weight. HSCs se-
crete many cytokines (for example, platelet derived
growth factor (PDGF), transforming growth factor-β
(TGF), interleukines) and also respond to them in an
autocrine manner [37,38]. Following acute or chronic
liver injury of any etiology, HSCs are activated and be-
come myofibroblast-like cells. This activation, or trans-
differentiation towards an activated phenotype, is
promoted by a number of pro-inflammatory cytokines,
such as TGF-β and PDGF [39,40]. Phenotypically, the
activated HSCs become proliferating, myofibroblast-like
cells that acquire a well-developed stress fiber cytoskel-
eton. Additionally, they lose their capacity to store vita-
min A and start to produce excessive amounts of ECM,
causing scar formation and thereby providing the funda-
mental needs for tissue repair [41,42]. HSC activation is
the result of an orchestrated process that can be divided
in three main phases: 1) initiation, 2) perpetuation and
3) resolution. The initiation phase of HSC activation
starts by paracrine signals, which include early changes
in ECM composition as a result of increased fibronectin
secretion by liver sinusoidal endothelial cells, which
leads to mild gene expression changes that render HSCs
more cytokine sensitive. Continuous exposure to the
paracrine and autocrine cytokines will cause perpetu-
ation of the activated phenotype and will lead to a net
increase in ECM production. The third step of HSC acti-
vation is potentially the most crucial to understand in
order to develop anti-fibrotic treatments, since it implies
the resolution of fibrosis. How the number of activated
HSCs decreases remains uncertain, but it may be the re-
sult of HSC apoptosis or reversal from the activated to
the quiescent or inactivated phenotype [37,43-47]. Next
to the contribution of HSCs to chronic liver injury,
recent papers revealed a role of activated HSCs in acute
liver injury. During acute injury, the number of activated
HSCs (αSMA+) increases rapidly and profibrotic gene
expression is quickly induced, this leads to regenerative
fibrosis that is resolved upon regeneration [48,49]. In
contrast to chronic injury, upon acute damage the inhib-
ition of HSC activation could be negative for recovery.
Due to limited availability of human study material,

in vitro studies of the mechanisms underlying mouse or
rat HSC activation have shown to be very informative
(Figure 2). Cells can be isolated from rodent livers and
when plated on culture dishes, cells spontaneously
undergo a process comparable to the in vivo HSC activa-
tion upon liver injury. In addition, the use of animal mod-
els has provided essential insights into fibrogenesis, which
helped researchers to extrapolate observations in animal
models to a more clinical setting. Some frequently used
mouse and rat models for liver disease are carbon tetra-
chloride (CCl4) or thioacetamide (TAA)-induced intoxica-
tion or invasive methods like the common bile duct
ligation (CBDL) model [50].

Kidney: glomerulosclerosis and tubulointerstitial fibrosis
The kidneys, part of the excretory system, receive ap-
proximately 20% of the cardiac output and are morpho-
logical versatile organs, which can be divided into the
cortex and medulla. In the renal cortex numerous highly
specialized blood filtration units, the glomeruli, can be
found surrounded by a network of tubules. The glom-
erulus itself is also a multiform structure consisting of
an intricately folded basement membrane (GBM), which
separates the fenestrated endothelial cells and mesangial
cells from the podocytes (top right panel Figure 2).
Whereas the conventional course of renal fibrosis is
dependent on the location of the onset, many diseases
affect kidney function by attacking the glomeruli. When
the integrity of this system is attacked, a series of stereo-
typical architectural lesions occurs [51]. Loss of podo-
cytes may lead to areas of “bare” GBM, which represents
a potential starting point of irreversible glomerular dis-
ease. These areas of denuded GBM are the site of bulk
leakage of plasma proteins through the glomerular filter.
The parietal epithelium is then triggered to attach to the
denuded GBM; this tuft adhesion to Bowman’s capsule
being the point-of-no-return. Focal architectural lesions
have a tendency to develop into more widespread struc-
tural lesions which further progress to full-blown scler-
osis. As the podocyte is a specialized differentiated non-
proliferating cell, podocyte injury is an apparent trigger
for glomerulosclerosis [52]. On the other hand, lesions
of the glomerular endothelium can contribute to the
underlying pathogenesis of progressive glomerular dis-
eases, as seen in preeclampsia. Glomerular endothelial
dysfunctions affect the surrounding microenvironment,



Figure 2 Multidisciplinary techniques for characterization of CCl4-induced liver fibrosis and ADR-induced renal fibrosis. Although the
liver and kidneys are very distinct organs, common techniques are available for detection of fibrotic damage in them. The top panel shows
schemes of the functional units of the kidneys and liver, respectively the glomerulus and the hepatic lobule. Histological staining, Periodic
Acid Schiff (PAS) or hematoxylin staining can be performed to study histological changes and are frequently combined with a Sirius Red
staining to quantify the degree of matrix deposition or scar formation. Finally, QPCR analysis can provide further information on changes in
gene expression upon organ fibrosis. Well-known markers are collagen 1 and alpha-smooth muscle actin, both representing the presence of
matrix-producing myofibroblasts. CCl4-induced liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (50 μg/100 g
body weight) twice a week for four weeks in BalbC male mice. ADR-induced renal fibrosis was induced by a single intravenous injection of
adriamycin (10 mg/kg body weight) and female mice were sacrificed 23 days after ADR injection. The study protocol was approved by the
Institutional Animal Care and Use Committee of Vrije Universiteit Brussel, permit numbers 10-212-3 and 09-217-1 and National Institutes of
Health principles of laboratory animal care (NIH publication 86–23, revised 1995) were followed. AA, afferent arteriole; CL, capillary loop;
CV, central vein; EA, efferent arteriole; HA, hepatic artery; HEP, hepatocyte or hepatocytes; HPV, hepatic portal vein; HSC, hepatic stellate cell;
M, mesangial cell; MD, macula densa; P, podocyte.
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thereby accelerating renal disease progression [53].
Mesangial cells are the third population that can play an
obvious role in a wide range of glomerular diseases. Em-
bedded in their own ECM, the mesangial cells have a
supporting function and can be considered as a specia-
lized pericyte for the glomerular microvasculature. The
amount and composition of mesangial ECM is tightly
regulated and clearly altered during disease by gener-
ation of a variety of inflammation mediators, such as
cytokines, chemokines and growth factors. These cellular
events, which can be found during diabetic nephropathy,
for example, will lead toward mesangial cell proliferation
and matrix expansion [54]. Moreover, gene mutations of
the GBM collagen type IV also give rise to severe patho-
logical conditions, the most well-known being Alport
syndrome, the most common hereditary nephropathy
[55,56]. Clinical features of this X-linked syndrome are
defects in the GBM resulting in hematuria, progressive
nephritis with proteinuria and declining renal function
[57,58].
Irrespective of the primary cause, most types of CKD

are characterized by the development of progressive
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renal tubulointerstitial fibrosis [59]. In other words, in
many cases glomerular diseases, such as FSGS (focal seg-
mental glomerulosclerosis) eventually lead to tubulointer-
stitial fibrosis [60,61]. Tubulointerstitial fibrosis is defined
as the excessive accumulation of ECM in the interstitium
surrounding the tubules. The prominently increasing
number of myofibroblasts, derived among others from the
resident interstitial fibroblasts, will result in abnormal
alterations in kidney structure. These injuries are corre-
lated with loss in renal function and will eventually lead
to end-stage renal failure (ESRF) [62].
To study the process of renal fibrosis various models are

available [63]; in the past the most widely used experimen-
tal approach was to reduce renal mass (remnant kidney)
[64,65]. Since the 1950s, puromycin aminonucleoside
nephrosis (PAN) has become an experimental prototype
for the pathological process of human minimal change
disease (MCD) and FSGS [66,67]. The critical role of
podocyte-specific genes in the mediation of FSGS has
been shown by inducible gene silencing in podocytes,
where proof of concept is given that the mutation/deletion
of a particular gene (for example, nephrin, podocin) is suf-
ficient to cause proteinuria and FSGS in human hereditary
diseases [68,69]. The Thy-1.1 mouse nephropathy model
can also be used for the study of FSGS [70,71]. The most
well-established mouse model for human FSGS is the
adriamycin-induced nephropathy model [72-75], while
unilateral ureteral obstruction (UUO) has been extensively
studied as a model where the initial insult is located in the
tubulointerstitial compartment, characterized by tubular
epithelial injury and cell death [76].

HDACs
Acetylation of nucleosomal histones on the ε-amino
group of lysine residues was first discovered in 1968.
However, it was not until the mid-1990s before the enzy-
mes responsible for the balance between the acetylated/
deacetylated states of histones, namely histone acetyl-
transferases (HATs) and histone deacetylases (HDACs)
were identified. Histone acetylation restores the positive
charge of lysine residues, loosening their interaction with
negatively-charged DNA. These changes in chromatin
structure facilitate the accessibility of transcription fac-
tors and, consequently, gene transcription can occur. On
the contrary, deacetylation will result in tightly wrapped
DNA and transcriptional repression. In general, HDACs
have an opposing function to HATs, with HATs pro-
moting and HDACs silencing gene transcription [77-80].
In addition, acetylation of non-histone proteins like
transcription factors themselves can affect their DNA
binding properties, thus regulating gene expression.
Numerous cytoplasmic proteins, such as tubulin and
heat shock protein 90, can be (de)acetylated, altering
their function. HDACs can, therefore, also be referred
to as lysine deacetylases (KDACs) to more precise-
ly describe their function rather than their targets
[81-83].
Dependent on sequence similarity and cofactor de-

pendency, HDACs are grouped into four classes and two
families: the ‘classical’ and the silent information regula-
tor 2 (Sir2)-related protein (sirtuin) families. The ‘clas-
sical’ HDACs require Zn2+ for their deacetylase activity
and comprises three classes; Class I (HDAC1, 2, 3 and
8), which are widely expressed and almost exclusively
located in nuclei, Class II (HDAC4, 5, 6, 7, 9 and 10)
and Class IV (HDAC11), which are expressed in a
tissue-specific manner and are primarily located in the
cytoplasm but can shuttle to the nucleus [83-87]. Class
III HDACs belongs to the sirtuin family, which contains
seven members (SIRT1-7) with no sequence resem-
blance to members of the classical family, requiring
NAD+ as a cofactor. These NAD+-dependent protein
acetylases are localized in the nucleus (SIRT1, SIRT6
and SIRT7), mitochondria (SIRT3-SIRT5) and cytoplasm
(SIRT2) [88-90].

HDAC inhibitors
HDAC inhibitors are exciting compounds with antican-
cer properties, altering gene expression to induce death,
differentiation and/or cell-cycle arrest of tumor cells.
These inhibitors interact with the catalytic domain of
HDACs and subsequently interfere with the function of
HDACs. Inhibitors of the Zn2+ dependent HDACs can
be divided in several different classes, due to their struc-
tural differences, including hydroxamic acids, cyclic pep-
tides, electrophilic ketones, short-chain fatty acids and
benzamides. The structural diversity among HDAC inhi-
bitors suggests that the mechanism of action may in-
volve other interactions on top of its HDAC contact to
account for the deacetylase activity of the inhibitor
[86,87,91]. The HDAC inhibitor trichostatin A (TSA) is
a hydroxamic acid, which was extensively studied and
found to have important applications in cancer therapy
[92-96]. Studies in a variety of mammalian tumor cell
lines, revealed that the antiproliferative activity of TSA is
due to an increase in histone acetylation. Nanomolar
concentrations of TSA are able to potently and revers-
ibly inhibit histone deacetylases. The activity of Class I,
II and IV HDACs is affected, while sirtuins (Class III
HDACs) remain TSA-insensitive [97]. The high potency
and specificity of TSA makes it a prototypical compound
and a very useful tool for studying the effects of HDAC
inhibition. However, TSA has only limited clinical use,
as it is metabolized within 30 minutes by the hepato-
cytes [98]. Investigators, therefore, developed more
stable and safer drugs without sacrificing HDAC inhibi-
tory potency [99,100], with a well-known TSA analog
being vorinostat or SAHA (suberoylanilide hydroxamic
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acid) [101,102]. Both TSA and SAHA are so called pan-
HDAC inhibitors, influencing the activity of HDACs 1
through 11 with roughly equivalent efficiency [87,103].
Among the growing list of HDAC inhibitors we also

find the short chain fatty acid valproic acid (VPA, 2-
propylpentanoic acid), which is considered primarily a
Class I HDAC inhibitor. VPA, first used as an organic
solvent, turned out to have anticonvulsive properties on
its own [104]. Recently, valproic acid was shown to have
antifibrotic effects both in a model for liver fibrosis as in
the experimental adriamycin-induced nephropathy model
[105,106]. Commercially, VPA is available as DepakeneW

(Sanofi, Paris, France) and its use in clinic ranges from an
anticonvulsant, mood-stabilizing drug to a drug against
depression, migraines and schizophrenia. Due to the HDAC
inhibitory property of VPA, this well-tolerated anticonvul-
sive drug, has in addition been extensively studied as an
antineoplastic agent [107-113].
Currently, there are more than 100 clinical trials

recruiting patients, where the anticancer efficiency of
HDAC inhibitors, like vorinostat and panobinostat, two
TSA-analogues, is tested. Both these HDAC inhibitors,
including entinostat, are being investigated for renal cell
carcinoma, while only panobinostat is currently explored
for hepatocellular carcinoma [114].
The currently used HDAC inhibitors in recruiting and

ongoing clinical trials are summarized in Table 1 (source:
clinicaltrials.gov). Despite their difference in potency and
Table 1 Overview of most frequently used HDAC inhibitors in

Name Alternative names HDACs inhibited # of c

Vorinostat N1-hydroxy-N8-phenyl-
octanediamide, SAHA,
Suberoylanilide Hydroxamic
Acid, Zolinza

Class I and II 72

Panobinostat LBN-589; LBH589; NVP-LBH589 Class I, II and IV 23

Valproic acid Dipropylacetic acid, VPA,
myproic acid, Depakene

Class I 12

Entinostat SNDX-275; MS-27-275, MS-275 HDAC1,3 6

Belinostat PXD101; PX105684 Class I, II and IV 2

CUDC-101 7-((4-((3-ethynylphenyl)amino)-7-
methoxyquinazolin-6-yl)oxy)-N-
hydroxyheptanamide

multitargeted
HDAC, EGFR and
HER2 inhibitor

2

Table source: clinicaltrials.gov.
selectivity towards certain HDACs, the various inhibitors
in general lead to growth arrest, differentiation and apop-
tosis of malignant cells [115,116]. It should be noted that
next to histones, also many non-histone proteins can be
dynamically (de)acetylated. Many of them are important
oncogenes and tumor suppressors, such as MYC, p53 and
PTEN [81,82].
In the last part of this review, we will focus on studies

that investigated the use of HDAC inhibitors as potential
antifibrotics through the use of in vitro and in vivo mod-
els of both liver and kidney disease.

HDACs and HDAC inhibitors in liver fibrosis
Niki et al. were the first to explore the anti-fibrotic
effects of HDAC-inhibitors in a model for stellate cell
activation. A first in vitro study showed that both so-
dium butyrate and TSA could modulate rat stellate cell
activation. Collagen 1 and 3 and α-smooth muscle actin
(α-SMA) up-regulation was blocked by HDAC inhibition
and proliferation was decreased upon treatment, with a
pronounced better potential for TSA [117]. Later studies
by the Geerts lab, revealed that TSA treatment led to
alterations in actin cytoskeleton forming components.
They described how TSA induced a down-regulation of
actin related proteins 2 and 3 (Arp2, Arp3) and RhoA,
and an up-regulation of two capping proteins: adducing-
like protein 70 (ADDL70) and gelsolin. These effects
were translated in reduced stellate cell migration
the currently recruiting clinical trials

linical trials Disease

Breast Cancer; Ovarian, Fallopian Tube, or Peritoneal
Cancer; Prostate Cancer; Soft Tissue Sarcoma; Non-Small
Cell Lung Cancer; Solid Tumors with/without HIV
infection; Gastric cancer; Multiple Myeloma; Multiple
Lymphoid Malignancies, such as Leukemia, Mantle Cell
Lymphoma; Large B-Cell Lymphoma; T-Cell Lymphoma;
Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma,
Myelodysplastic Syndromes or Myeloproliferative
Disorders; Adenoid Cystic Carcinoma; Head and Neck
Cancer; Brain Metastasis; Neuroblastoma; Glioma;
Glioblastoma Multiforme; Embryonal Tumors of the
Central Nervous System; Metastatic Melanoma of the Eye;
Graft-Host Disease; Renal Cell Carcinoma

Myelodysplastic Syndrome; Metastatic Gastric Cancer;
Breast Cancer; B-Cell Lymphoma; Leukemia; Graft-Host
Disease; Renal Cell Carcinoma; Hodgkin’s Lymphoma;
Lung Cancer; Prostate Cancer; Hepatocellular Carcinoma;
T-Cell Lymphoma; Chordoma

Sarcoma; Myelodysplastic Syndrome; Leukemia;
Lymphoma; Gliomas; Cervical Cancer; Ovarian cancer

Leukemia; Renal Cell Carcinoma; Resected Stage I
Non-Small Cell Lung Cancer

Small Cell Lung Carcinoma; Lymphomas

Head and Neck Cancers

http://clinicaltrials.gov
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following incubation with TSA [118,119]. Although, this
was a promising kick-off for antifibrotic studies of
HDAC inhibitors, information on effects of TSA treat-
ment in in vivo models of liver injury is limited. As seen
by Sirius red staining, TSA administration hampers col-
lagen deposition in CCl4 treated rats (unpublished data).
A more recent study by Zhang et al. showed the protect-
ive effects of TSA on liver injury in a mouse model for
sepsis. During sepsis, the liver is not only an important
actor in the host defensive response, but it will also suf-
fer from the dysregulation of inflammatory mediators.
TSA treatment of mice that underwent cecal ligation
and puncture resulted in lower serum levels of transami-
nases and increased the presence of anti-inflammatory
interleukin 10 (IL-10). This suggests that TSA alleviated
hepatic injury following sepsis [120]. In a lipopolysac-
charide (LPS) induced model for sepsis, SAHA adminis-
tration decreased activation of MAP kinases (p38 and
ERK) in vivo, which might explain the described im-
provement in sepsis-induced liver injury [121]. These
studies all focused on the observed antifibrotic effects
upon HDAC inhibition rather than on the role of indi-
vidual HDACs or mechanisms underlying the potential
of the used compounds. In contrast, a recent study by
Elsharkawy determined a role for HDAC1 in the NF-κB
orchestrated regulation of MMP13 expression. Overex-
pression of p50 in a human stellate cell line LX2 could
suppress MMP13 expression. In addition, the authors
show that the presence of p50 is essential for recruit-
ment of HDAC1 to the MMP13 promoter, by perform-
ing chromatin immunoprecipitation (ChIP) on freshly
isolated HSCs from Nfkb−/− (p50-deficient) and wild
type mice. TSA was employed as a tool to show that in-
hibition of HDAC activity could prevent the p50-
induced repression of MMP13 expression. Together, this
could explain the overexpression of MMP13 in HSCs
from Nfkb−/− compared to wild type animals, but this
then seems to be contradictory to the increased suscep-
tibility of these Nfkb−/− mice to CCl4. While MMP13 is
a protease involved in degradation of fibrillar collagen,
this matrix remodeling also leads to release of matrix
bound inactive profibrogenic cytokines contributing to
inflammation and disease progression [122]. This recent
study confirmed earlier data on repression of TNFα by
HDAC1 in stellate cells, using the same transgene
mouse model [122,123]. Other reports emphasizing a
role of HDAC enzymes during liver fibrosis used 2’,4’,6’-
Tris(methoxymethoxy) chalcone (TMMC), VPA and ec-
topic HDAC4 expression, respectively [105,124,125].
TMMC reduced the number of α-SMA expressing cells
by induction of apoptosis of activated stellate cells at
high concentrations [124]. In the study by Qin, the role
of HDAC4, a member of Class II HDACs, was investi-
gated in an in vitro model. They show that ectopic
HDAC4 expression in stellate cells regulates expression
of MMP9 and MMP13 following IL-1 stimulation [125].
A report on the role of HDAC6 in alcohol-induced
alterations in Wif-B liver cells, (a hybrid of human fibro-
blasts and Fao rat hepatoma cells), showed a decreased
HDAC6 expression after alcohol or TSA treatment and
this resulted in changes in microtubule dynamics. How-
ever, the authors did not evaluate the impact of these
changes on cell polarity or liver injury [126]. In the study
by Mannaerts et al., it was shown that VPA administra-
tion inhibits stellate cell activation in vitro and in vivo.
The in vivo effect was investigated by treating mice with
carbontetrachloride and VPA and subsequent isolation
of hepatic stellate cells. These cells had lower pro-
fibrotic gene expression levels compared to cells isolated
from mice treated with CCl4 alone. The observed effects
were partially due to inhibition of Class I HDAC activity,
since the VPA effect could be in part mimicked by
siRNA mediated knockdown of the Class I HDACs. The
knock-down of class I HDACs in contrast to VPA treat-
ment did not affect α-SMA expression, but strongly
reduced the expression of matrix remodeling enzyme
lysyl oxidase [105].
In conclusion, most HDAC-inhibitor liver studies

focus on the effects on disease development or reversal,
without having a closer look at the molecular mechan-
isms of the inhibition. As a result, the contribution of
the individual HDACs to liver disease still remains un-
clear. A role for Class I HDACs has been described
[105,122,123,127], but also the expression of Class II
HDACs was documented in liver biopsies of hepatocel-
lular carcinoma patients. The expression of Class II
HDACs (HDAC4, 5, 6, 7, 9 and 10) were gradually ele-
vated from normal to cirrhotic and HCC livers. This
trend was closely related to progressive up-regulation of
MEF2, suggesting a link among HDAC activity, MEF2
expression, stellate cell activation and the degree of liver
disease [128]. It is clear that HDACs have emerged as
interesting targets for anti-fibrotic therapy and that fur-
ther exploration of their individual function and the pos-
sibility for therapeutic intervention is meaningful. In
addition, two recent papers [46,47] elegantly showed
that upon recovery from liver injury, the activated myofi-
broblasts can be reverted to stellate cells presenting a
more quiescent phenotype. Studies by Niki et al. [117]
and Mannaerts et al. [105] have shown that in vitro this
process of HSC reversal can be stimulated by HDAC in-
hibitor treatment, indicating that the in vivo process of
conversion to stellate cell quiescence could be acceler-
ated by HDAC inhibitory treatment.
The effects of HDAC inhibition on stellate cell activa-

tion are not only interesting for the fibrosis field, but
also for the development of anti-hepatocellular carcin-
oma treatment. Hepatocarcinogenesis is modulated by



Van Beneden et al. Fibrogenesis & Tissue Repair 2013, 6:1 Page 8 of 14
http://www.fibrogenesis.com/content/6/1/1
the cross-talk of malignant hepatocytes with surround-
ing stromal cells. In vitro and in vivo studies provide evi-
dence that stellate cells increase hepatocellular growth,
EMT, invasiveness and tumor volume [129-133]. Re-
cently, it was shown that treatments have differential
effects on the two compartments and targeting of
HDACs using TSA can influence this bidirectional
cross-talk [134,135]. In these studies, an immortalized
HSC cell line was used and additional research with pri-
mary HSCs could further support this promising thera-
peutic strategy.

HDACs and HDAC inhibitors in kidney fibrosis
In 2002, a renal cell line was exposed to an HDAC in-
hibitor for the first time [136]. Yu et al. showed that the
excessive NO (nitric oxide) production, correlating with
glomerular disease, can be limited by an HDAC inhibi-
tor. TSA was shown to restrain not only the induction
of endogenous NO in mesangial cells, but also iNOS (in-
ducible nitric oxide synthase) promoter activity in re-
sponse to cytokines, such as IL-1β. Overexpression
experiments further revealed that HDAC2 could aug-
ment the induction of iNOS promoter activity [137]. In
a later study, the inhibition of iNOS in mesangial cells
by TSA was shown to be regulated by phosphoinositide-
3-kinase- (PI3K) and p70s6-kinase-dependent pathways,
controlled by epigenetic histone H4 modifications [138].
In addition, both TSA and VPA could inhibit mesangial
cell proliferation and hamper collagen and α-SMA syn-
thesis. TSA was further shown to interfere with cell
cycle progression by specifically blocking the G1/S tran-
sition. Moreover, TSA-treated mesangial cells were
shown to have a flattened stellate-shaped morphology,
comparable to hepatic stellate cells [139].
Recently, CTGF (connective tissue growth factor), in

collaboration with TGF-β, was shown to promote the
development of fibrosis in a variety of fibrotic models
both in the liver and kidneys [140]. The expression of
CTGF in renal endothelial and epithelial cells can be
influenced by HDAC inhibitors [141-143]. Interestingly,
the expression of CTGF was differentially regulated by
different HDAC inhibitors. CTGF was clearly up-regu-
lated when endothelial cells were incubated with TSA,
sodium butyrate and SAHA, nevertheless VPA was found
to be less effective [141]; while in epithelial cells, CTGF
expression was dependent on culture confluency and do-
nor variability [142,143].
Besides exposing glomerular cells to HDAC inhibitors, a

number of studies on cells of the tubulointerstitial com-
partment, that is, proximal tubular epithelial cells or inter-
stitial fibroblasts, have explored the in vitro effect of HDAC
inhibitors. Peinado et al. showed that down-regulation of
E-cadherin in proximal tubular epithelial cells under TGF-
β-stimulated culture conditions involved Snail-mediated
recruitment of the Sin3A/HDAC1/HDAC2 complex [144].
This prompted researchers to further study the effect of
HDAC inhibitors on tubulointerstitial cells in vitro, as elab-
orately reviewed by Pang et al. [145]. In short, TGF-beta1-
induced EMT-like morphological changes can be prevented
when exposing proximal tubular epithelial cells to TSA
[143]. In addition, TSA was also found to restore CREB
(cAMP-responsive element binding protein) function in the
cisplatin-induced cytotoxic model [146]. Initially, conflict-
ing results for apoptosis were described when proximal
tubular epithelial cells were treated with either TSA or
SAHA [147,148], where further studies of the Fujita group
clearly show that TSA prevents TGF-beta1-induced apop-
tosis by inhibiting ERK activation [149]. In vitro knock-
down studies of HDAC1, in both renal interstitial
fibroblasts and tubular epithelial cells, showed that HDAC1
is involved in fibroblast proliferation and chemokine pro-
duction [150,151]. In contrast, however, HDAC1 was
demonstrated to be recruited as a co-repressor to the pro-
moters of IL-6 and IL-12b under ischemia/reperfusion (I/
R) injury in proximal tubular epithelial cells, and in vivo si-
lencing of HDAC1 enhanced renal dysfunction induced by
I/R injury [152]. This report implies that HDAC inhibitory
therapy will not have a protective effect, although the pos-
sible use of HDAC inhibitors as a therapy for renal fibrosis
was established in UUO [151,153,154], streptozotocin-
induced diabetic nephropathy [155-157], other ischemia
models [158,159], and adriamycin nephropathy [106].
Again using the HDAC inhibitor TSA, researchers

showed the inhibition of both α-SMA expression and
STAT3 phosphorylation in the mouse UUO model [154],
while FR276457 (pan-HDAC inhibitor) was able to exert a
prophylactic effect against renal interstitial fibrosis by
inhibiting monocyte chemotactic protein-1 (MCP-1) pro-
duction [153]. TSA was shown to reduce macrophage in-
filtration in the UUO model, where additional in vitro
experiments suggest that HDAC1 and HDAC2 may
modulate proinflammatory responses in early stages of
tubulointerstitial injury [151]. In streptozotocin-induced
diabetic kidneys, TSA reduces the expression of ECM
components and prevented EMT [157]. In the same
model, vorinostat (SAHA) attenuated early renal enlarge-
ment and authors showed that this effect is most likely
mediated, or at least in part, by down-regulation of the
epidermal growth factor receptor (EGFR) [156]. The same
group also showed the reduction of endothelial nitric oxi-
dase synthase (eNOS) in the attenuation of diabetic
nephropathy by SAHA [155]. Recently, Van Beneden et al.
showed that VPA can prevent kidney injury and protein-
uria in the murine adriamycin nephropathy model when
chronic VPA administration was started prior to the adria-
mycin insult. Furthermore, when postponing VPA admin-
istration, renal disease progression was attenuated and the
established proteinuria was corrected. VPA could hamper
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kidney disease progression by inhibiting glomerular apop-
tosis and proliferation induced by adriamycin [106].
These data further confirm the notion that HDAC inhibi-
tors can abrogate renal inflammation and fibrosis, as was
seen in other renal injury models discussed earlier
[151,153,154,156-159]. The possible antiproteinuric effect
of HDAC inhibitors was also observed in the rat Thy-1.1-
induced glomerulonephritis model. In this study, both
TSA and VPA were found to significantly suppress pro-
teinuria (25 to 51% and 39 to 68%, respectively) [139]. In
the streptozotocin-induced diabetic nephropathy model,
TSA was able to reduce proteinuria by approximately
35% [157].
Together these in vivo animal studies confirm the no-

tion that HDAC inhibitors can abrogate renal inflamma-
tion and fibrosis, as nicely discussed in the recent review
by Brilli et al. [160]. However, we want to stress that
only a small number of studies have explored the effects
of HDAC inhibitors on glomerular cells in vitro, where
specific data on HDAC inhibition in podocytes are lack-
ing thus far. In conclusion, more research should be
Figure 3 Overview of processes affected by HDAC inhibition in liver a
fibrosis the beneficial effects of HDAC inhibitors have been reported as dis
focused on the effects on stellate cell activation. Different aspects of this p
remodeling proteins. By inhibiting HSC activation, the development of fibro
inhibitors can be found in both the glomerular and tubulointerstitial comp
deposition and inflammation, are hampered. Abrogating the pathological p
potentially inhibit the development and progression of chronic kidney dise
done to reveal the mechanism by which HDAC inhibi-
tors can reduce in vivo fibrosis and proteinuria.
Conclusions
A great deal of work is still needed to fully understand the
mechanisms of fibrogenesis, but a substantial amount of
progress has been made over the years. When we reflect
on literature discussed in this review, we find that HDAC
inhibitors are potential antifibrotic agents for both liver
and kidney fibrosis, as the common mechanisms of fibro-
sis like ECM accumulation and inflammation can be
reduced with the therapy of HDAC inhibitors (Figure 3).
The modulation of the immune response by HDAC inhi-
bitors has been extensively described in some recent
reviews and is not unique to fibrosis. In general, HDACs
play a role in leukocyte differentiation and survival, regu-
late the function of macrophages and dendritic cells by
controlling inflammatory mediator production and can
possibly modulate Toll-like receptor and interferon signal-
ing pathways [161,162].
nd kidney fibrosis. In experimental models of both liver and kidney
cussed in this review. (A) Specifically for liver, most studies have
rocess have been described, such as, for example, the effects on matrix
sis can be inhibited. (B) In kidneys, the favorable properties of HDAC
artment, where processes, such as proliferation, apoptosis, ECM
rocesses of glomerulosclerosis and tubulointerstitial (TI) fibrosis can
ase (CKD).
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In general, inhibition of HDAC activity will lead to
increased histone acetylation, which in turn will mostly
result in gene activation, thus the diminution of the ex-
pression of inflammatory and fibrotic genes in an experi-
mental setting is most likely due to indirect targeting
through miRNAs or other transcriptional repressors. In
the given overview, we find that mostly pan- or class I
specific HDAC inhibitors are being used in the field of
liver and kidney fibrosis. Further research dissecting the
individual role of each HDAC during fibrosis would,
therefore, be very interesting; this would contribute to the
development of selective inhibitors that are more toler-
able and effective. A possible good candidate with joined
relevance in the pathological process of kidney and liver
fibrosis might be HDAC1, as previously discussed. The
development of a specific inhibitor remains challenging,
since the catalytic site of all HDAC enzymes is highly
conserved and thus most HDAC inhibitors will obstruct
the catalytic site of all HDAC enzymes [163]. Despite our
focus on (de)acetylation, we are aware of the possible
additive effects of the inhibition of methylation during
fibrosis. In preclinical cancer studies that combined an
HDAC inhibitor with a demethylating agent (for exam-
ple, 5’azacytidine), beneficial effects have been observed
[164,165]. The combination of HDAC inhibitors and
5’azacytidine could possibly be valuable for treatment of
fibrosis in patients, as recent publications pointed out
roles for methylation in hepatic stellate cells and in kid-
ney fibrosis [45,166-168].
To conclude, we only highlighted the promising find-

ings on HDAC inhibition in liver and kidney fibrosis,
but the intrinsic role of HDACs in fibrogenesis of other
organs becomes clear [169-171]. While originally appre-
ciated for their anticancer properties, a growing body of
evidence now supports the safety and efficacy of HDAC
inhibitors in experimental models of liver and kidney
disease, potentially expanding their clinical application.

Abbreviations
α-SMA: alpha-smooth muscle actin; ADDL70: Adducing-like protein 70; Apr2/
3: actin related proteins2 and 3; CBDL: Common bile duct ligation;
CCl4: Carbon tetrachloride; ChIP: chromatin immunoprecipitation;
CKD: Chronic kidney disease; CLD: Chronic liver disease; CREB: cAMP-
responsive element binding protein; CTGF: connective tissue growth factor;
EASL: European association for the study of the liver; ECM: Extracellular
matrix; EGFR: epidermal growth factor receptor; EMT: Epithelium-to-
mesenchymal transition; EndoMT: Endothelial-to-mesenchymal transition;
eNOS: Endothelial nitric oxidase synthase; ERK: Extracellular signal-regulated
kinase; ESRF: End-stage renal failure; EU: European union; FSGS: Focal
segmental glomerulosclerosis; Fsp1: Fibroblast-specific protein 1;
GBM: Glomerular basement membrane; HAT: Histone acetyltransferase;
HDAC: Histone deacetylase; HSCs: Hepatic stellate cells; IL-10: Interleukin 10;
iNOS: Inducible nitric oxide synthase; I/R: Ischemia/reperfusion; KDAC: Lysine
deacetylase; LPS: Lipopolysaccharide; MCD: Minimal change disease; MCP-
1: Monocyte chemotactic protein-1; MMP13: Matrix metalloproteinase 13;
NAD+: Nicotinamide adenine dinucleotide; NF-κB: Nuclear factor-kappa B;
NO: Nitric oxide; PAN: Puromycin aminonucleoside nephrosis;
PI3K: Phosphoinositide-3-kinase; PDGF: Platelet derived growth factor;
RhoA: Ras homolog gene family, member A; SAHA: Suberoylanilide
hydroxamic acid; Sir2: Silent information regulator 2; TAA: Thioacetamide;
TGF-β: Transforming growth factor-beta; TMMC: 20,40,60-Tris(methoxymethoxy)
chalcone; TNF-α: Tumor necrosis factor-alpha; TSA: Trichostatin A;
UUO: Unilateral ureteral obstruction; VPA: Valproic acid.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
IM and KVB did the research and writing. MP, CVdB and LvG performed the
editing. All authors read and approved the final manuscript.

Acknowledgements
I. Mannaerts and L. A. van Grunsven are supported by the Vrije Universiteit
Brussel through a Geconcerteerde Onderzoeksactie (GOA48 and GOA78)
project and by the Fund for Scientific Research Flanders (FWO-V) (G.0260.09).
K. Van Beneden and C. Van den Branden are supported by the Vrije
Universiteit Brussel through an Onderzoeksraad project (OZR1428 and
OZR1796).

Received: 19 October 2012 Accepted: 29 November 2012
Published: 2 January 2013

References
1. Adam R, Karam V, Delvart V, O'Grady J, Mirza D, Klempnauer J, Castaing D,

Neuhaus P, Jamieson N, Salizzoni M, Pollard S, Lerut J, Paul A, Garcia-Valdecasas
JC, Rodríguez FS, Burroughs A, all contributing centers (www.eltr.org);
European Liver and Intestine Transplant Association (ELITA): Evolution of
indications and results of liver transplantation in Europe. A report from the
European Liver Transplant Registry (ELTR). J Hepatol 2012, 57:675–688.

2. European Association for the Study of the Liver: EASL Annual Report 2009.
Geneva, Switzerland: European Association for the Study of the Liver; 2010.

3. Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL,
D'Amico G, Dickson ER, Kim WR: A model to predict survival in patients
with end-stage liver disease. Hepatology 2001, 33:464–470.

4. Yu Y, Fisher JE, Lillegard JB, Rodysill B, Amiot B, Nyberg SL: Cell therapies
for liver diseases. Liver Transpl 2012, 18:9–21.

5. Adam R, McMaster P, O'Grady JG, Castaing D, Klempnauer JL, Jamieson N,
Neuhaus P, Lerut J, Salizzoni M, Pollard S, Muhlbacher F, Rogiers X, Garcia
Valdecasas JC, Berenguer J, Jaeck D, Moreno Gonzalez E, European Liver
Transplant Association: Evolution of liver transplantation in Europe: report
of the European Liver Transplant Registry. Liver Transpl 2003, 9:1231–1243.

6. Couser WG, Remuzzi G, Mendis S, Tonelli M: The contribution of chronic
kidney disease to the global burden of major noncommunicable
diseases. Kidney Int 2011, 80:1258–1270.

7. James MT, Hemmelgarn BR, Tonelli M: Early recognition and prevention of
chronic kidney disease. Lancet 2010, 375:1296–1309.

8. Narayan KM, Ali MK, Koplan JP: Global noncommunicable diseases–where
worlds meet. N Engl J Med 2010, 363:1196–1198.

9. Schieppati A, Remuzzi G: Chronic renal diseases as a public health
problem: epidemiology, social, and economic implications. Kidney Int
Suppl 2005, 98:S7–S10.

10. EKHA: The European Kidney Health Alliance, 2011. www.ekha.eu.
11. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever

O, Mareel M, Gabbiani G: Recent developments in myofibroblast biology:
paradigms for connective tissue remodeling. Am J Pathol 2012,
180:1340–1355.

12. Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol 2008,
214:199–210.

13. Hinz B: Formation and function of the myofibroblast during tissue repair.
J Invest Dermatol 2007, 127:526–537.

14. Hinz B: The myofibroblast: paradigm for a mechanically active cell.
J Biomech 2010, 43:146–155.

15. Hinz B, Gabbian G: Fibrosis: recent advances in myofibroblast biology and
new therapeutic perspectives. F1000 Biol Rep 2010, 2:78.

16. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G: The
myofibroblast: one function, multiple origins. Am J Pathol 2007,
170:1807–1816.

17. Forbes SJ, Parola M: Liver fibrogenic cells. Best Pract Res Clin Gastroenterol
2011, 25:207–217.

http://www.ekha.eu


Van Beneden et al. Fibrogenesis & Tissue Repair 2013, 6:1 Page 11 of 14
http://www.fibrogenesis.com/content/6/1/1
18. Lin SL, Kisseleva T, Brenner DA, Duffield JS: Pericytes and perivascular
fibroblasts are the primary source of collagen-producing cells in
obstructive fibrosis of the kidney. Am J Pathol 2008, 173:1617–1627.

19. Meran S, Steadman R: Fibroblasts and myofibroblasts in renal fibrosis. Int
J Exp Pathol 2011, 92:158–167.

20. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV,
Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte
and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol
2010, 176:85–97.

21. Herzog EL, Bucala R: Fibrocytes in health and disease. Exp Hematol 2010,
38:548–556.

22. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating
fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem
Cell Biol 2004, 36:598–606.

23. Higashiyama R, Moro T, Nakao S, Mikami K, Fukumitsu H, Ueda Y, Ikeda K,
Adachi E, Bou-Gharios G, Okazaki I, Inagaki Y: Negligible contribution of
bone marrow-derived cells to collagen production during hepatic
fibrogenesis in mice. Gastroenterology 2009, 137:1459–1466.e1.

24. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R: Fibroblasts in
kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am
Soc Nephrol 2008, 19:2282–2287.

25. Fragiadaki M, Mason RM: Epithelial-mesenchymal transition in renal
fibrosis - evidence for and against. Int J Exp Pathol 2011, 92:143–150.

26. Liu Y: New insights into epithelial-mesenchymal transition in kidney
fibrosis. J Am Soc Nephrol 2010, 21:212–222.

27. Quaggin SE, Kapus A: Scar wars: mapping the fate of epithelial-
mesenchymal-myofibroblast transition. Kidney Int 2011, 80:41–50.

28. Zeisberg M, Duffield JS: Resolved: EMT produces fibroblasts in the kidney.
J Am Soc Nephrol 2010, 21:1247–1253.

29. Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher
M, Brenner DA: Hepatocytes do not undergo epithelial-mesenchymal
transition in liver fibrosis in mice. Hepatology 2010, 51:1027–1036.

30. Scholten D, Osterreicher CH, Scholten A, Iwaisako K, Gu G, Brenner DA,
Kisseleva T: Genetic labeling does not detect epithelial-to-mesenchymal
transition of cholangiocytes in liver fibrosis in mice. Gastroenterology
2010, 139:987–998.

31. Chu AS, Diaz R, Hui JJ, Yanger K, Zong Y, Alpini G, Stanger BZ, Wells RG:
Lineage tracing demonstrates no evidence of cholangiocyte epithelial-
to-mesenchymal transition in murine models of hepatic fibrosis.
Hepatology 2011, 53:1685–1695.

32. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG: Evidence that
fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest
2002, 110:341–350.

33. Pinzani M: Epithelial-mesenchymal transition in chronic liver disease:
fibrogenesis or escape from death? J Hepatol 2011, 55:459–465.

34. Cook HT: The origin of renal fibroblasts and progression of kidney
disease. Am J Pathol 2010, 176:22–24.

35. Geerts A: On the origin of stellate cells: mesodermal, endodermal or
neuro-ectodermal? J Hepatol 2004, 40:331–334.

36. Blomhoff R, Wake K: Perisinusoidal stellate cells of the liver: important
roles in retinol metabolism and fibrosis. FASEB J 1991, 5:271–277.

37. Friedman SL: Hepatic stellate cells: protean, multifunctional, and
enigmatic cells of the liver. Physiol Rev 2008, 88:125–172.

38. Geerts A: History, heterogeneity, developmental biology, and functions
of quiescent hepatic stellate cells. Semin Liver Dis 2001, 21:311–335.

39. Pinzani M, Marra F: Cytokine receptors and signaling in hepatic stellate
cells. Semin Liver Dis 2001, 21:397–416.

40. Dooley S, ten Dijke P: TGF-beta in progression of liver disease. Cell Tissue
Res 2012, 347:245–256.

41. Kent G, Gay S, Inouye T, Bahu R, Minick OT, Popper H: Vitamin A-containing
lipocytes and formation of type III collagen in liver injury. Proc Natl Acad
Sci U S A 1976, 73:3719–3722.

42. McLean AJ, Morgan DJ: Clinical pharmacokinetics in patients with liver
disease. Clin Pharmacokinet 1991, 21:42–69.

43. Kisseleva T, Brenner DA: Anti-fibrogenic strategies and the regression of
fibrosis. Best Pract Res Clin Gastroenterol 2011, 25:305–317.

44. Pinzani M, Rombouts K: Liver fibrosis: from the bench to clinical targets.
Dig Liver Dis 2004, 36:231–242.

45. Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ,
Müller CA, Kalluri R, Zeisberg M: Methylation determines fibroblast
activation and fibrogenesis in the kidney. Nat Med 2010, 16:544–550.
46. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K,
Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK,
Brenner DA: Myofibroblasts revert to an inactive phenotype during
regression of liver fibrosis. Proc Natl Acad Sci U S A 2012,
109:9448–9453.

47. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, Pradere JP,
Friedman RA, Schwabe RF: Deactivation of hepatic stellate cells during
liver fibrosis resolution in mice. Gastroenterology 2012, 143:1073–1083.

48. Dechêne A, Sowa JP, Gieseler RK, Jochum C, Bechmann LP, El Fouly A,
Schlattjan M, Saner F, Baba HA, Paul A, Dries V, Odenthal M, Gerken G,
Friedman SL, Canbay A: Acute liver failure is associated with elevated
liver stiffness and hepatic stellate cell activation. Hepatology 2010,
52:1008–1016.

49. Rastogi A, Bihari C, Maiwall R, Ahuja A, Sharma MK, Kumar A, Sarin SK: Hepatic
stellate cells are involved in the pathogenesis of acute-on-chronic liver
failure (ACLF). Virchows Arch 2012, 461:393–398.

50. Starkel P, Leclercq IA: Animal models for the study of hepatic fibrosis. Best
Pract Res Clin Gastroenterol 2011, 25:319–333.

51. Jennette JC, Olson JL, Schwarz MM, Silva FG: Heptinstall’s Pathology of the
Kidney. 6th edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

52. Kriz W, Gretz N, Lemley KV: Progression of glomerular diseases: is the
podocyte the culprit? Kidney Int 1998, 54:687–697.

53. Hennessy A, Makris A: Preeclamptic nephropathy. Nephrology (Carlton)
2011, 16:134–143.

54. Schlondorff D, Banas B: The mesangial cell revisited: no cell is an island.
J Am Soc Nephrol 2009, 20:1179–1187.

55. Hanson H, Storey H, Pagan J, Flinter F: The value of clinical criteria in
identifying patients with X-linked Alport syndrome. Clin J Am Soc Nephrol
2011, 6:198–203.

56. Li JG, Ding J, Wang F, Zhang HW, et al: Drugs controlling proteinuria of
patients with Alport syndrome. World J Pediatr 2009, 5:308–311.

57. Kashtan CE: Alport syndrome and thin glomerular basement membrane
disease. J Am Soc Nephrol 1998, 9:1736–1750.

58. Sato Y, Wharram BL, Lee SK, Wickman L, Goyal M, Venkatareddy M, Chang
JW, Wiggins JE, Lienczewski C, Kretzler M, Wiggins RC: Urine podocyte
mRNAs mark progression of renal disease. J Am Soc Nephrol 2009,
20:1041–1052.

59. Kriz W, LeHir M: Pathways to nephron loss starting from glomerular
diseases-insights from animal models. Kidney Int 2005, 67:404–419.

60. Boor P, Ostendorf T, Floege J: Renal fibrosis: novel insights into
mechanisms and therapeutic targets. Nat Rev Nephrol 2010, 6:643–656.

61. Zeisberg M, Neilson EG: Mechanisms of tubulointerstitial fibrosis. J Am Soc
Nephrol 2010, 21:1819–1834.

62. Nangaku M: Mechanisms of tubulointerstitial injury in the kidney: final
common pathways to end-stage renal failure. Intern Med 2004, 43:9–17.

63. Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV,
Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, Shankland SJ:
Inducible rodent models of acquired podocyte diseases. Am J Physiol
Renal Physiol 2009, 296:F213–F229.

64. Kliem V, Johnson RJ, Alpers CE, Yoshimura A, Couser WG, Koch KM, Floege J:
Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in
5/6-nephrectomized rats. Kidney Int 1996, 49:666–678.

65. Shimamura T, Morrison AB: A progressive glomerulosclerosis occurring in
partial five-sixths nephrectomized rats. Am J Pathol 1975, 79:95–106.

66. Diamond JR, Karnovsky MJ: Focal and segmental glomerulosclerosis
following a single intravenous dose of puromycin aminonucleoside. Am
J Pathol 1986, 122:481–487.

67. Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D,
Wiggins R: Podocyte depletion and glomerulosclerosis have a direct
relationship in the PAN-treated rat. Kidney Int 2001, 60:957–968.

68. Bugeon L, Danou A, Carpentier D, Langridge P, Syed N, Dallman MJ:
Inducible gene silencing in podocytes: a new tool for studying
glomerular function. J Am Soc Nephrol 2003, 14:786–791.

69. Shigehara T, Zaragoza C, Kitiyakara C, Takahashi H, Lu H, Moeller M,
Holzman LB, Kopp JB: Inducible podocyte-specific gene expression in
transgenic mice. J Am Soc Nephrol 2003, 14:1998–2003.

70. Assmann KJ, van Son JP, Dïjkman HB, Mentzel S, Wetzels JF: Antibody-
induced albuminuria and accelerated focal glomerulosclerosis in the
Thy-1.1 transgenic mouse. Kidney Int 2002, 62:116–126.

71. Smeets B, Dijkman HB, te Loeke NA, van Son JP, Steenbergen EJ, Assmann
KJ, Wetzels JF, Groenen PJ: Podocyte changes upon induction of



Van Beneden et al. Fibrogenesis & Tissue Repair 2013, 6:1 Page 12 of 14
http://www.fibrogenesis.com/content/6/1/1
albuminuria in Thy-1.1 transgenic mice. Nephrol Dial Transplant 2003,
18:2524–2533.

72. Chen A, Sheu LF, Ho YS, Lin YF, Chou WY, Chou TC, Lee WH: Experimental
focal segmental glomerulosclerosis in mice. Nephron 1998,
78:440–452.

73. Lee VW, Harris DC: Adriamycin nephropathy: a model of focal segmental
glomerulosclerosis. Nephrology (Carlton) 2011, 16:30–38.

74. Van Beneden K, van Grunsven LA, Geers C, Pauwels M, Desmoulière A,
Verbeelen D, Geerts A, Van den Branden C: CRBP-I in the renal
tubulointerstitial compartment of healthy rats and rats with renal
fibrosis. Nephrol Dial Transplant 2008, 23:3464–3471.

75. Wang Y, Wang YP, Tay YC, Harris DC: Progressive adriamycin nephropathy
in mice: sequence of histologic and immunohistochemical events. Kidney
Int 2000, 58:1797–1804.

76. Chevalier RL, Forbes MS, Thornhill BA: Ureteral obstruction as a model of
renal interstitial fibrosis and obstructive nephropathy. Kidney Int 2009,
75:1145–1152.

77. Bannister AJ, Kouzarides T: Regulation of chromatin by histone
modifications. Cell Res 2011, 21:381–395.

78. Kouzarides T: Acetylation: a regulatory modification to rival
phosphorylation? EMBO J 2000, 19:1176–1179.

79. Kouzarides T: Chromatin modifications and their function. Cell 2007,
128:693–705.

80. López-Rodas G, Brosch G, Georgieva EI, Sendra R, Franco L, Loidl P: Histone
deacetylase: A key enzyme for the binding of regulatory proteins to
chromatin. FEBS Lett 1993, 317:175–180.

81. Spange S, Wagner T, Heinzel T, Krämer OH: Acetylation of non-histone
proteins modulates cellular signalling at multiple levels. Int J Biochem Cell
Biol 2009, 41:185–198.

82. Norris KL, Lee JY, Yao TP: Acetylation goes global: the emergence of
acetylation biology. Sci Signal 2009, 2:pe76.

83. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen
JV, Mann M: Lysine acetylation targets protein complexes and co-
regulates major cellular functions. Science 2009, 325:834–840.

84. Kim HJ, Bae SC: Histone deacetylase inhibitors: molecular mechanisms of
action and clinical trials as anti-cancer drugs. Am J Transl Res 2011,
3:166–179.

85. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB:
Histone deacetylases (HDACs): characterization of the classical HDAC
family. Biochem J 2003, 370:737–749.

86. Johnstone RW: Histone-deacetylase inhibitors: novel drugs for the
treatment of cancer. Nat Rev Drug Discov 2002, 1:287–299.

87. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills
E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB,
Lichenstein HS, Sehested M: Determination of the class and isoform
selectivity of small-molecule histone deacetylase inhibitors. Biochem J
2008, 409:581–589.

88. Hallows WC, Lee S, Denu JM: Sirtuins deacetylate and activate
mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 2006,
103:10230–10235.

89. Denu JM: The Sir 2 family of protein deacetylases. Curr Opin Chem Biol
2005, 9:431–440.

90. Gray SG, Ekstrom TJ: The human histone deacetylase family. Exp Cell Res
2001, 262:75–83.

91. Marks PA, Xu WS: Histone deacetylase inhibitors: Potential in cancer
therapy. J Cell Biochem 2009, 107:600–608.

92. Khabele D, Son DS, Parl AK, Goldberg GL, Augenlicht LH, Mariadason JM,
Rice VM: Drug-induced inactivation or gene silencing of class I histone
deacetylases suppresses ovarian cancer cell growth: implications for
therapy. Cancer Biol Ther 2007, 6:795–801.

93. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, Itoh A,
Funata N, Schreiber SL, Yoshida M, Toi M: Significance of HDAC6
regulation via estrogen signaling for cell motility and prognosis in
estrogen receptor-positive breast cancer. Oncogene 2005,
24:4531–4539.

94. Taddei A, Roche D, Bickmore WA, Almouzni G: The effects of histone
deacetylase inhibitors on heterochromatin: implications for anticancer
therapy? EMBO Rep 2005, 6:520–524.

95. Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S, Miyakawa I,
Koeffler HP: Histone deacetylase inhibitors have a profound antigrowth
activity in endometrial cancer cells. Clin Cancer Res 2004, 10:1141–1149.
96. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC:
NF-kappaB p50 promotes HIV latency through HDAC recruitment and
repression of transcriptional initiation. EMBO J 2006, 25:139–149.

97. Yoshida M, Kijima M, Akita M, Beppu T: Potent and specific inhibition of
mammalian histone deacetylase both in vivo and in vitro by trichostatin
A. J Biol Chem 1990, 265:17174–17179.

98. Sanderson L, Taylor GW, Aboagye EO, Alao JP, Latigo JR, Coombes RC,
Vigushin DM: Plasma pharmacokinetics and metabolism of the histone
deacetylase inhibitor trichostatin a after intraperitoneal administration to
mice. Drug Metab Dispos 2004, 32:1132–1138.

99. Elaut G, Laus G, Alexandre E, Richert L, Bachellier P, Tourwé D, Rogiers V,
Vanhaecke T: A metabolic screening study of trichostatin A (TSA) and
TSA-like histone deacetylase inhibitors in rat and human primary
hepatocyte cultures. J Pharmacol Exp Ther 2007, 321:400–408.

100. Fraczek J, Deleu S, Lukaszuk A, Doktorova T, Tourwé D, Geerts A, Vanhaecke
T, Vanderkerken K, Rogiers V: Screening of amide analogues of
Trichostatin A in cultures of primary rat hepatocytes: search for potent
and safe HDAC inhibitors. Invest New Drugs 2009, 27:338–346.

101. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA: A
class of hybrid polar inducers of transformed cell differentiation inhibits
histone deacetylases. Proc Natl Acad Sci U S A 1998, 95:3003–3007.

102. Vanhaecke T, Papeleu P, Elaut G, Rogiers V: Trichostatin A-like
hydroxamate histone deacetylase inhibitors as therapeutic agents:
toxicological point of view. Curr Med Chem 2004, 11:1629–1643.

103. Bieliauskas AV, Pflum MK: Isoform-selective histone deacetylase inhibitors.
Chem Soc Rev 2008, 37:1402–1413.

104. Davis R, Peters DH, McTavish D: Valproic acid. A reappraisal of its
pharmacological properties and clinical efficacy in epilepsy. Drugs 1994,
47:332–372.

105. Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA,
Geerts A: Chronic administration of valproic acid inhibits activation of
mouse hepatic stellate cells in vitro and in vivo. Hepatology 2010,
51:603–614.

106. Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van
Grunsven LA, Van den Branden C: Valproic acid attenuates proteinuria
and kidney injury. J Am Soc Nephrol 2011, 22:1863–1875.

107. Blaheta RA, Michaelis M, Driever PH, Cinatl J Jr: Evolving anticancer drug
valproic acid: insights into the mechanism and clinical studies. Med Res
Rev 2005, 25:383–397.

108. Chateauvieux S, Morceau F, Dicato M, Diederich M: Molecular and
therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol
2010. doi:10.1155/2010/479364.

109. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman
JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T: Valproic acid defines a novel
class of HDAC inhibitors inducing differentiation of transformed cells.
EMBO J 2001, 20:6969–6978.

110. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS: Histone deacetylase is a
target of valproic acid-mediated cellular differentiation. Cancer Res 2004,
64:1079–1086.

111. Johannessen CU: Mechanisms of action of valproate: a commentatory.
Neurochem Int 2000, 37:103–110.

112. Krämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA,
Brill B, Groner B, Bach I, Heinzel T, Göttlicher M: The histone deacetylase
inhibitor valproic acid selectively induces proteasomal degradation of
HDAC2. EMBO J 2003, 22:3411–3420.

113. Lagace DC, O’Brien WT, Gurvich N, Nachtigal MW, Klein PS: Valproic acid:
how it works. Or not. Clin Neurosci Res 2004, 4:215–225.

114. ClinicalTrials.gov: A service of the U. S. National Institutes of Health. 2012.
www.clinicaltrials.gov.

115. Federico M, Bagella L: Histone deacetylase inhibitors in the treatment of
hematological malignancies and solid tumors. J Biomed Biotechnol 2011,
2011:475–641.

116. Tan J, Cang S, Ma Y, Petrillo RL, Liu D: Novel histone deacetylase inhibitors
in clinical trials as anti-cancer agents. J Hematol Oncol 2010, 3:5.

117. Niki T, Rombouts K, De Bleser P, De Smet K, Rogiers V, Schuppan D, Yoshida
M, Gabbiani G, Geerts A: A histone deacetylase inhibitor, trichostatin A,
suppresses myofibroblastic differentiation of rat hepatic stellate cells in
primary culture. Hepatology 1999, 29:858–867.

118. Rombouts K, Niki T, Wielant A, Hellemans K, Geerts A: Trichostatin A, lead
compound for development of antifibrogenic drugs. Acta Gastroenterol
Belg 2001, 64:239–246.

http://dx.doi.org/10.1155/2010/479364
http://www.clinicaltrials.gov


Van Beneden et al. Fibrogenesis & Tissue Repair 2013, 6:1 Page 13 of 14
http://www.fibrogenesis.com/content/6/1/1
119. Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P,
Gelman I, Ramadori G, Geerts A: Actin filament formation, reorganization
and migration are impaired in hepatic stellate cells under influence of
trichostatin A, a histone deacetylase inhibitor. J Hepatol 2002, 37:788–796.

120. Zhang L, Wan J, Jiang R, Wang W, Deng H, Shen Y, Zheng W, Wang Y:
Protective effects of trichostatin A on liver injury in septic mice. Hepatol
Res 2009, 39:931–938.

121. Finkelstein RA, Li Y, Liu B, Shuja F, Fukudome E, Velmahos GC, de Moya M,
Alam HB: Treatment with histone deacetylase inhibitor attenuates MAP
kinase mediated liver injury in a lethal model of septic shock. J Surg Res
2010, 163:146–154.

122. Elsharkawy AM, Oakley F, Lin F, Packham G, Mann DA, Mann J: The NF-kappaB
p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition
of multiple pro-inflammatory genes. J Hepatol 2010, 53:519–527.

123. Oakley F, Mann J, Nailard S, Smart DE, Mungalsingh N, Constandinou C, Ali
S, Wilson SJ, Millward-Sadler H, Iredale JP, Mann DA: Nuclear factor-
kappaB1 (p50) limits the inflammatory and fibrogenic responses to
chronic injury. Am J Pathol 2005, 166:695–708.

124. Lee SH, Zhao YZ, Park EJ, Che XH, Seo GS, Sohn DH: 2’,4’,6’-Tris
(methoxymethoxy) chalcone induces apoptosis by enhancing Fas-ligand
in activated hepatic stellate cells. Eur J Pharmacol 2011, 658:9–15.

125. Qin L, Han YP: Epigenetic repression of matrix metalloproteinases in
myofibroblastic hepatic stellate cells through histone deacetylases 4.
implication in tissue fibrosis. Am J Pathol 2010, 177:1915–1928.

126. Shepard BD, Joseph RA, Kannarkat GT, Rutledge TM, Tuma DJ, Tuma PL:
Alcohol-induced alterations in hepatic microtubule dynamics can be
explained by impaired histone deacetylase 6 function. Hepatology 2008,
48:1671–1679.

127. Watanabe T, Tajima H, Hironori H, Nakagawara H, Ohnishi I, Takamura H,
Ninomiya I, Kitagawa H, Fushida S, Tani T, Fujimura T, Ota T, Wakayama T,
Iseki S, Harada S: Sodium valproate blocks the transforming growth factor
(TGF)-beta1 autocrine loop and attenuates the TGF-beta1-induced
collagen synthesis in a human hepatic stellate cell line. Int J Mol Med
2011, 28:919–925.

128. Bai X, Wu L, Liang T, Liu Z, Li J, Li D, Xie H, Yin S, Yu J, Lin Q, Zheng S:
Overexpression of myocyte enhancer factor 2 and histone hyperacetylation
in hepatocellular carcinoma. J Cancer Res Clin Oncol 2008, 134:83–91.

129. Santamato A, Fransvea E, Dituri F, Caligiuri A, Quaranta M, Niimi T, Pinzani
M, Antonaci S, Giannelli G: Hepatic stellate cells stimulate HCC cell
migration via laminin-5 production. Clin Sci (Lond) 2011, 121:159–168.

130. Yang JD, Nakamura I, Roberts LR: The tumor microenvironment in
hepatocellular carcinoma: current status and therapeutic targets. Semin
Cancer Biol 2011, 21:35–43.

131. Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer
P, Bosserhoff AK, Hellerbrand C: Activated hepatic stellate cells promote
tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009,
100:646–653.

132. van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug
H, Dolznig H, Mikulits W: Hepatic tumor-stroma crosstalk guides epithelial
to mesenchymal transition at the tumor edge. Oncogene 2009,
28:4022–4033.

133. Sancho-Bru P, Juez E, Moreno M, Khurdayan V, Morales-Ruiz M, Colmenero
J, Arroyo V, Brenner DA, Ginès P, Bataller R: Hepatocarcinoma cells
stimulate the growth, migration and expression of pro-angiogenic genes
in human hepatic stellate cells. Liver Int 2010, 30:31–41.

134. Rangwala F, Williams KP, Smith GR, Thomas Z, Allensworth JL, Lyerly HK,
Diehl AM, Morse MA, Devi GR: Differential effects of arsenic trioxide on
chemosensitization in human hepatic tumor and stellate cell lines. BMC
Cancer 2012, 12:402.

135. Coulouarn C, Corlu A, Glaise D, Guénon I, Thorgeirsson SS, Clément B:
Hepatocyte-stellate cell cross-talk in the liver engenders a permissive
inflammatory microenvironment that drives progression in
hepatocellular carcinoma. Cancer Res 2012, 72:2533–2542.

136. Zhang W, Kone BC: NF-kappaB inhibits transcription of the H(+)-K
(+)-ATPase alpha(2)-subunit gene: role of histone deacetylases. Am J
Physiol Renal Physiol 2002, 283:F904–F911.

137. Yu Z, Zhang W, Kone BC: Histone deacetylases augment cytokine
induction of the iNOS gene. J Am Soc Nephrol 2002, 13:2009–2017.

138. Yu Z, Kone BC: Targeted histone H4 acetylation via phosphoinositide
3-kinase- and p70s6-kinase-dependent pathways inhibits iNOS induction
in mesangial cells. Am J Physiol Renal Physiol 2006, 290:F496–F502.
139. Freidkin I, Herman M, Tobar A, Chagnac A, Ori Y, Korzets A, Gafter U: Effects
of histone deacetylase inhibitors on rat mesangial cells. Am J Physiol
Renal Physiol 2010, 298:F426–F434.

140. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang
W, Oliver N, Lin A, Yeowell D: Cooperative interaction of CTGF and TGF-beta in
animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011, 4:4.

141. Komorowsky C, Ocker M, Goppelt-Struebe M: Differential regulation of
connective tissue growth factor in renal cells by histone deacetylase
inhibitors. J Cell Mol Med 2009, 13:2353–2364.

142. Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M:
Characterization of connective tissue growth factor expression in
primary cultures of human tubular epithelial cells: modulation by
hypoxia. Am J Physiol Renal Physiol 2010, 298:F796–F806.

143. Yoshikawa M, Hishikawa K, Marumo T, Fujita T: Inhibition of histone
deacetylase activity suppresses epithelial-to-mesenchymal transition
induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol
2007, 18:58–65.

144. Peinado H, Ballestar E, Esteller M, Cano A: Snail mediates E-cadherin
repression by the recruitment of the Sin3A/histone deacetylase 1
(HDAC1)/HDAC2 complex. Mol Cell Biol 2004, 24:306–319.

145. Pang M, Zhuang S: Histone deacetylase: a potential therapeutic target for
fibrotic disorders. J Pharmacol Exp Ther 2010, 335:266–272.

146. Arany I, Herbert J, Herbert Z, Safirstein RL: Restoration of CREB function
ameliorates cisplatin cytotoxicity in renal tubular cells. Am J Physiol Renal
Physiol 2008, 294:F577–F581.

147. Dong G, Luo J, Kumar V, Dong Z: Inhibitors of histone deacetylases
suppress cisplatin-induced p53 activation and apoptosis in renal tubular
cells. Am J Physiol Renal Physiol 2010, 298:F293–F300.

148. Dong G, Wang L, Wang CY, Yang T, Kumar MV, Dong Z: Induction of
apoptosis in renal tubular cells by histone deacetylase inhibitors, a
family of anticancer agents. J Pharmacol Exp Ther 2008, 325:978–984.

149. Yoshikawa M, Hishikawa K, Idei M, Fujita T: Trichostatin a prevents TGF-
beta1-induced apoptosis by inhibiting ERK activation in human renal
tubular epithelial cells. Eur J Pharmacol 2010, 642:28–36.

150. Pang M, Ma L, Liu N, Ponnusamy M, Zhao TC, Yan H, Zhuang S: Histone
deacetylase 1/2 mediates proliferation of renal interstitial fibroblasts and
expression of cell cycle proteins. J Cell Biochem 2011, 112:2138–2148.

151. Marumo T, Hishikawa K, Yoshikawa M, Hirahashi J, Kawachi S, Fujita T:
Histone deacetylase modulates the proinflammatory and -fibrotic
changes in tubulointerstitial injury. Am J Physiol Renal Physiol 2010,
298:F133–F141.

152. Li HF, Cheng CF, Liao WJ, Lin H, Yang RB: ATF3-mediated epigenetic
regulation protects against acute kidney injury. J Am Soc Nephrol 2010,
21:1003–1013.

153. Kinugasa F, Noto T, Matsuoka H, Urano Y, Sudo Y, Takakura S, Mutoh S:
Prevention of renal interstitial fibrosis via histone deacetylase inhibition
in rats with unilateral ureteral obstruction. Transpl Immunol 2010,
23:18–23.

154. Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, Zhuang S:
Inhibition of histone deacetylase activity attenuates renal fibroblast
activation and interstitial fibrosis in obstructive nephropathy. Am J
Physiol Renal Physiol 2009, 297:F996–F1005.

155. Advani A, Huang Q, Thai K, Advani SL, White KE, Kelly DJ, Yuen DA, Connelly
KA, Marsden PA, Gilbert RE: Long-term administration of the histone
deacetylase inhibitor vorinostat attenuates renal injury in experimental
diabetes through an endothelial nitric oxide synthase-dependent
mechanism. Am J Pathol 2011, 178:2205–2214.

156. Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA, Connelly KA, Advani
A: Histone deacetylase inhibition attenuates diabetes-associated kidney
growth: potential role for epigenetic modification of the epidermal
growth factor receptor. Kidney Int 2011, 79:1312–1321.

157. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB: Histone deacetylase-2
is a key regulator of diabetes- and transforming growth factor-beta1-
induced renal injury. Am J Physiol Renal Physiol 2009, 297: F729–F739.

158. Marumo T, Hishikawa K, Yoshikawa M, Fujita T: Epigenetic regulation of
BMP7 in the regenerative response to ischemia. J Am Soc Nephrol 2008,
19:1311–1320.

159. Zacharias N, Sailhamer EA, Li Y, Liu B, Butt MU, Shuja F, Velmahos GC,
de Moya M, Alam HB: Histone deacetylase inhibitors prevent apoptosis
following lethal hemorrhagic shock in rodent kidney cells. Resuscitation
2011, 82:105–109.



Van Beneden et al. Fibrogenesis & Tissue Repair 2013, 6:1 Page 14 of 14
http://www.fibrogenesis.com/content/6/1/1
160. Brilli LL, Swanhart LM, de Caestecker MP, Hukriede NA, et al: HDAC
inhibitors in kidney development and disease. Pediatr Nephrol 2012.
doi:10.1007/s00467-012-2320-8.

161. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ: Histone
deacetylases as regulators of inflammation and immunity. Trends
Immunol 2011, 32:335–343.

162. Sweet MJ, Shakespear MR, Kamal NA, Fairlie DP: HDAC inhibitors:
modulating leukocyte differentiation, survival, proliferation and
inflammation. Immunol Cell Biol 2012, 90:14–22.

163. Wang D: Computational studies on the histone deacetylases and the
design of selective histone deacetylase inhibitors. Curr Top Med Chem
2009, 9:241–256.

164. Hellebrekers DM, Griffioen AW, van Engeland M: Dual targeting of
epigenetic therapy in cancer. Biochim Biophys Acta 2006, 1775:7–91.

165. Yi TZ, Li J, Han X, Guo J, Qu Q, Guo L, Sun HD, Tan WH: DNMT inhibitors
and HDAC Inhibitors regulate E-Cadherin and Bcl-2 expression in
endometrial carcinoma in vitro and in vivo. Chemotherapy 2012, 58:19–29.

166. Mann DA, Mann J: Epigenetic regulation of hepatic stellate cell activation.
J Gastroenterol Hepatol 2008, 23(Suppl 1):S108–S111.

167. Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, Mann DA:
MeCP2 controls an epigenetic pathway that promotes myofibroblast
transdifferentiation and fibrosis. Gastroenterology 2009, 138:705–714.

168. Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA:
Regulation of myofibroblast transdifferentiation by DNA methylation
and MeCP2: implications for wound healing and fibrogenesis. Cell Death
Differ 2007, 14:275–285.

169. Kee HJ, Kook H: Roles and targets of class I and IIa histone deacetylases
in cardiac hypertrophy. J Biomed Biotechnol 2011, 2011:928326.

170. Wiech NL, Fisher JF, Helquist P, Wiest O: Inhibition of histone deacetylases:
a pharmacological approach to the treatment of non-cancer disorders.
Curr Top Med Chem 2009, 9(3):257–271.

171. Rishikof DC, Ricupero DA, Liu H, Goldstein RH: Phenylbutyrate decreases
type I collagen production in human lung fibroblasts. J Cell Biochem
2004, 91:740–748.

doi:10.1186/1755-1536-6-1
Cite this article as: Van Beneden et al.: HDAC inhibitors in experimental
liver and kidney fibrosis. Fibrogenesis & Tissue Repair 2013 6:1.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1007/s00467-012-2320-8

	Abstract
	Introduction
	Review
	Fibrosis
	Hepatic fibrosis
	Kidney: glomerulosclerosis and tubulointerstitial fibrosis
	HDACs
	HDAC inhibitors
	HDACs and HDAC inhibitors in liver fibrosis
	HDACs and HDAC inhibitors in kidney fibrosis

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

